REFERENCES

1. Yu M, Peng Y, Wang X, Ran F. Emerging design strategies toward developing next-generation implantable batteries and supercapacitors. Adv Funct Mater 2023;33:2301877.

2. Hu X, Ma Z, Li J, et al. Superior water anchoring hydrogel validated by colorimetric sensing. Mater Horiz 2020;7:3250-7.

3. Gong JP. Materials both tough and soft. Science 2014;344:161-2.

4. Laschewsky A, Rosenhahn A. Molecular design of zwitterionic polymer interfaces: searching for the difference. Langmuir 2019;35:1056-71.

5. Sakai-Kato K, Kato M, Ishihara K, Toyo’oka T. An enzyme-immobilization method for integration of biofunctions on a microchip using a water-soluble amphiphilic phospholipid polymer having a reacting group. Lab Chip 2004;4:4-6.

6. Morawetz H. Polyelectrolyte solutions: phenomena and interpretation. ACS Symposium Series 2006;937:1-18.

7. Donnio B, Guillon D, Harada A, et al. Supramolecular polymers/polymeric betains/oligomers. Heidelberg: Springer Berlin; 2006.

8. Bonyadi SZ, Demott CJ, Grunlan MA, Dunn AC. Cartilage-like tribological performance of charged double network hydrogels. J Mech Behav Biomed Mater 2021;114:104202.

9. Sun Y, Lu S, Li Q, et al. High strength zwitterionic nano-micelle hydrogels with superior self-healing, adhesive and ion conductive properties. Eur Polym J 2020;133:109761.

10. Qi X, Zhang H, Li Y, Zhang X, Ma H, Zhang L. Nonfouling and antibacterial zwitterionic contact lenses loaded with heme-mimetic gallium porphyrin for treating keratitis. Langmuir 2022;38:14335-44.

11. Decarli NO, Zapp E, de Souza BS, Santana ER, Winiarski JP, Vieira IC. Biosensor based on laccase-halloysite nanotube and imidazolium zwitterionic surfactant for dopamine determination. Biochem Eng J 2022;186:108565.

12. Ladd J, Zhang Z, Chen S, Hower JC, Jiang S. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 2008;9:1357-61.

13. Jain P, Hung HC, Li B, et al. Zwitterionic hydrogels based on a degradable disulfide carboxybetaine cross-linker. Langmuir 2019;35:1864-71.

14. Zhang C, Zhou Y, Han H, Zheng H, Xu W, Wang Z. Dopamine-triggered hydrogels with high transparency, self-adhesion, and thermoresponse as skinlike sensors. ACS Nano 2021;15:1785-94.

15. Wang J, Wang L, Wu C, et al. Antibacterial zwitterionic polyelectrolyte hydrogel adhesives with adhesion strength mediated by electrostatic mismatch. ACS Appl Mater Interfaces 2020;12:46816-26.

16. Zhu Y, Zhang J, Song J, et al. A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Adv Funct Mater 2020;30:1905493.

17. Yu P, Li Y, Sun H, et al. Mimicking antioxidases and hyaluronan synthase: a zwitterionic nanozyme for photothermal therapy of osteoarthritis. Adv Mater 2023;35:2303299.

18. Yin H, King DR, Sun TL, et al. Polyzwitterions as a versatile building block of tough hydrogels: from polyelectrolyte complex gels to double-network gels. ACS Appl Mater Interfaces 2020;12:50068-76.

19. Sällström N, Capel A, Lewis MP, Engstrøm DS, Martin S. 3D-printable zwitterionic nano-composite hydrogel system for biomedical applications. J Tissue Eng 2020;11:2041731420967294.

20. Wen C, Zhang J, Li Y, et al. A zwitterionic hydrogel coated titanium surface with high-efficiency endothelial cell selectivity for rapid re-endothelialization. Biomater Sci 2020;8:5441-51.

21. Zhao J, Diaz-Dussan D, Wu M, et al. Dual-cross-linked network hydrogels with multiresponsive, self-healing, and shear strengthening properties. Biomacromolecules 2021;22:800-10.

22. Shen W, Zhang Y, Wan P, et al. Antineoplastic drug-free anticancer strategy enabled by host-defense-peptides-mimicking synthetic polypeptides. Adv Mater 2020;32:2001108.

23. Men Y, Peng S, Yang P, et al. Biodegradable zwitterionic nanogels with long circulation for antitumor drug delivery. ACS Appl Mater Interfaces 2018;10:23509-21.

24. Pei X, Zhang H, Zhou Y, Zhou L, Fu J. Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Mater Horiz 2020;7:1872-82.

25. Yang B, Yuan W. Highly stretchable, adhesive, and mechanical zwitterionic nanocomposite hydrogel biomimetic skin. ACS Appl Mater Interfaces 2019;11:40620-8.

26. Wang S, Zhang D, He X, et al. Anti-swelling zwitterionic hydrogels as multi-modal underwater sensors and all-in-one supercapacitors. ACS Appl Polym Mater 2022;4:7498-507.

27. Rong M, Liu H, Scaraggi M, et al. High lubricity meets load capacity: cartilage mimicking bilayer structure by brushing up stiff hydrogels from subsurface. Adv Funct Mater 2020;30:2004062.

28. Yang J, Han Y, Lin J, et al. Ball-bearing-inspired polyampholyte-modified microspheres as bio-lubricants attenuate osteoarthritis. Small 2020;16:2006356.

29. Katchalsky A, Miller IR. Polyampholytes. J Polym Sci 1954;13:57-68.

30. Yuan YY, Mao CQ, Du XJ, Du JZ, Wang F, Wang J. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor. Adv Mater 2012;24:5476-80.

31. Zheng J, Li M, Yao Y, Zhang X, Wang L. Zwitterionic carbon nanotube assisted thin-film nanocomposite membranes with excellent efficiency for separation of mono/divalent ions from brackish water. J Mater Chem A 2017;5:13730-9.

32. Li G, Xue H, Gao C, Zhang F, Jiang S. Nonfouling polyampholytes from an ion-pair comonomer with biomimetic adhesive groups. Macromolecules 2010;43:14-6.

33. Ehrmann M, Mathis A, Meurer B, Scheer M, Galin JC. Statistical n-butyl acrylate-(sulfopropyl)ammonium betaine copolymers. 2. Structural studies. Macromolecules 1992;25:2253-61.

34. Lowe AB, Billingham NC, Armes SP. Synthesis and aqueous solution properties of novel zwitterionic block copolymers. Chem Commun 1997:1035-6.

35. Baker JP, Blanch HW, Prausnitz JM. Swelling properties of acrylamide-based ampholytic hydrogels: comparison of experiment with theory. Polymer 1995;36:1061-9.

36. Shao Q, Jiang S. Molecular understanding and design of zwitterionic materials. Adv Mater 2015;27:15-26.

37. Chen Y, Han H, Tong H, et al. Zwitterionic phosphorylcholine - TPE conjugate for pH-responsive drug delivery and AIE active imaging. ACS Appl Mater Interfaces 2016;8:21185-92.

38. Liu Z, Wang Y, Ren Y, et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Mater Horiz 2020;7:919-27.

39. Jiang S, Cao Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 2010;22:920-32.

40. Zhang Z, Chao T, Chen S, Jiang S. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 2006;22:10072-7.

41. Chang Y, Chen S, Yu Q, Zhang Z, Bernards M, Jiang S. Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance. Biomacromolecules 2007;8:122-7.

42. Chang Y, Chang WJ, Shih YJ, Wei TC, Hsiue GH. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS Appl Mater Interfaces 2011;3:1228-37.

43. Matsuno R, Ishihara K. Integrated functional nanocolloids covered with artificial cell membranes for biomedical applications. Nano Today 2011;6:61-74.

44. Liu Q, Li W, Wang H, Newby BZ, Cheng F, Liu L. Amino acid-based zwitterionic polymer surfaces highly resist long-term bacterial adhesion. Langmuir 2016;32:7866-74.

45. Li D, Wei Q, Wu C, et al. Superhydrophilicity and strong salt-affinity: zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems. Adv Colloid Interface Sci 2020;278:102141.

46. Deng P, Li X, Wang Y, et al. Highly stretchable ionic and electronic conductive fabric. Adv Fiber Mater 2023;5:198-208.

47. Rose MA, Šmíd B, Vorokhta M, et al. Identifying ionic and electronic charge transfer at oxide heterointerfaces. Adv Mater 2021;33:2004132.

48. McDaniel JG, Yethiraj A. Influence of electronic polarization on the structure of ionic liquids. J Phys Chem Lett 2018;9:4765-70.

49. Jin Z, Kong X, Huang H, et al. Garnet-type solid-state mixed ionic and electronic conductor. Energy Storage Mater 2023;59:102788.

50. Cardoso J, Huanosta A, Manero O. Ionic conductivity studies on salt-polyzwitterion systems. Macromolecules 1991;24:2890-5.

51. Yang J, Xu Z, Wang J, et al. Antifreezing zwitterionic hydrogel electrolytes: antifreezing zwitterionic hydrogel electrolyte with high conductivity of 12.6 mS cm-1 at -40 °C through hydrated lithium ion hopping migration (Adv. Funct. Mater. 18/2021). Adv Funct Mater 2021;31:2170121.

52. Wang L, Gao G, Zhou Y, et al. Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors. ACS Appl Mater Interfaces 2019;11:3506-15.

53. Tiyapiboonchaiya C, Pringle JM, Sun J, et al. The zwitterion effect in high-conductivity polyelectrolyte materials. Nat Mater 2004;3:29-32.

54. Jin X, Jiang H, Qiao F, et al. Fabrication of alginate-P (SBMA-co-AAm) hydrogels with ultrastretchability, strain sensitivity, self-adhesiveness, biocompatibility, and self-cleaning function for strain sensors. J Appl Polym Sci 2021;138:49697.

55. Gao G, Yang F, Zhou F, et al. Bioinspired self-healing human-machine interactive touch pad with pressure-sensitive adhesiveness on targeted substrates. Adv Mater 2020;32:2004290.

56. Cai N, Li Q, Zhang J, et al. Antifouling zwitterionic hydrogel coating improves hemocompatibility of activated carbon hemoadsorbent. J Colloid Interface Sci 2017;503:168-77.

57. Huang H, Zhang C, Crisci R, et al. Strong surface hydration and salt resistant mechanism of a new nonfouling zwitterionic polymer based on protein stabilizer TMAO. J Am Chem Soc 2021;143:16786-95.

58. Carr L, Cheng G, Xue H, Jiang S. Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels. Langmuir 2010;26:14793-8.

59. Vaisocherová H, Zhang Z, Yang W, et al. Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma - material selection and protein immobilization optimization. Biosens Bioelectron 2009;24:1924-30.

60. Liu Y, Zhang D, Ren B, et al. Molecular simulations and understanding of antifouling zwitterionic polymer brushes. J Mater Chem B 2020;8:3814-28.

61. Vales TP, Jee JP, Lee WY, Min I, Cho S, Kim HJ. Protein adsorption and bacterial adhesion resistance of cross-linked copolymer hydrogels based on poly(2-methacryloyloxyethyl phosphorylcholine) and poly(2-hydroxyethyl methacrylate). Bulletin Korean Chem Soc 2020;41:406-12.

62. Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res 1998;39:323-30.

63. Zhou L, Lei D, Wang Q, Luo X, Chen Y. Biocompatible polyphosphorylcholine hydrogels with inherent antibacterial and nonfouling behavior effectively promote skin wound healing. ACS Appl Bio Mater 2020;3:5357-66.

64. Zhou L, Lei D, Wang Q, Ouyang Y, Luo X. Rational design of polyphosphorylcholine-based micelles for superior anti-biofilm activity. Macro Mater Eng 2022;307:2100806.

65. Fu F, Wang J, Tan Y, Yu J. Super-hydrophilic zwitterionic polymer surface modification facilitates liquid transportation of microfluidic sweat sensors. Macromol Rapid Commun 2022;43:2100776.

66. Yu X, Liu Z, Janzen J, et al. Polyvalent choline phosphate as a universal biomembrane adhesive. Nat Mater 2012;11:468-76.

67. Hu G, Emrick T. Functional choline phosphate polymers. J Am Chem Soc 2016;138:1828-31.

68. Nyyssölä A. Pathways of glycine betaine synthesis in two extremely halophilic bacteria, actinopolyspora halophila and ectothiorhodospira halochloris. Available from: https://aaltodoc.aalto.fi/items/5b13c16e-8c5c-4589-a16b-2667cb8a7015. [Last accessed on 23 Feb 2024]

69. Vaisocherová H, Yang W, Zhang Z, et al. Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal Chem 2008;80:7894-901.

70. Mi L, Bernards MT, Cheng G, Yu Q, Jiang S. pH responsive properties of non-fouling mixed-charge polymer brushes based on quaternary amine and carboxylic acid monomers. Biomaterials 2010;31:2919-25.

71. West SL, Salvage JP, Lobb EJ, et al. The biocompatibility of crosslinkable copolymer coatings containing sulfobetaines and phosphobetaines. Biomaterials 2004;25:1195-204.

72. Fang K, Wang R, Zhang H, et al. Mechano-responsive, tough, and antibacterial zwitterionic hydrogels with controllable drug release for wound healing applications. ACS Appl Mater Interfaces 2020;12:52307-18.

73. Zhang Z, Vaisocherová H, Cheng G, Yang W, Xue H, Jiang S. Nonfouling behavior of polycarboxybetaine-grafted surfaces: structural and environmental effects. Biomacromolecules 2008;9:2686-92.

74. Zhu Y, Batchelor R, Lowe AB, Roth PJ. Design of thermoresponsive polymers with aqueous LCST, UCST, or both: modification of a reactive poly(2-vinyl-4,4-dimethylazlactone) scaffold. Macromolecules 2016;49:672-80.

75. Li Z, Hao B, Tang Y, et al. Effect of end-groups on sulfobetaine homopolymers with the tunable upper critical solution temperature (UCST). Eur Polym J 2020;132:109704.

76. Lewoczko EM, Wang N, Lundberg CE, et al. Effects of N-substituents on the solution behavior of poly(sulfobetaine methacrylate)s in water: upper and lower critical solution temperature transitions. ACS Appl Polym Mater 2021;3:867-78.

77. Hildebrand V, Laschewsky A, Wischerhoff E. Modulating the solubility of zwitterionic poly((3-methacrylamidopropyl)ammonioalkane sulfonate)s in water and aqueous salt solutions via the spacer group separating the cationic and the anionic moieties. Polym Chem 2016;7:731-40.

78. Saha P, Santi M, Frenken M, et al. Dual-temperature-responsive microgels from a zwitterionic functional graft copolymer with superior protein repelling property. ACS Macro Lett 2020;9:895-901.

79. Tamaki M, Kojima C. pH-switchable LCST/UCST-type thermosensitive behaviors of phenylalanine-modified zwitterionic dendrimers. RSC Adv 2020;10:10452-60.

80. Quan X, Zhao D, Li L, Zhou J. Understanding the cellular uptake of pH-responsive zwitterionic gold nanoparticles: a computer simulation study. Langmuir 2017;33:14480-9.

81. Zhou Y, Chen Z, Zhao D, Li D, He C, Chen X. A pH-triggered self-unpacking capsule containing zwitterionic hydrogel-coated MOF nanoparticles for efficient oral exendin-4 delivery. Adv Mater 2021;33:2102044.

82. Zhang Y, Liao J, Wang T, Sun W, Tong Z. Polyampholyte hydrogels with pH modulated shape memory and spontaneous actuation. Adv Funct Mater 2018;28:1707245.

83. Wang T, Wang X, Long Y, Liu G, Zhang G. Ion-specific conformational behavior of polyzwitterionic brushes: exploiting it for protein adsorption/desorption control. Langmuir 2013;29:6588-96.

84. Mccormick CL, Johnson CB. Water-soluble polymers. 28. Ampholytic copolymers of sodium 2-acrylamido-2-methylpropanesulfonate with (2-acrylamido-2-methylpropyl)dimethylammonium chloride: synthesis and characterization. Macromolecules 1988;21:686-93.

85. Han X, Leng C, Shao Q, Jiang S, Chen Z. Absolute orientations of water molecules at zwitterionic polymer interfaces and interfacial dynamics after salt exposure. Langmuir 2019;35:1327-34.

86. Zheng SY, Zhou J, Si M, et al. A molecularly engineered zwitterionic hydrogel with strengthened anti-polyelectrolyte effect: from high-rate solar desalination to efficient electricity generation. Adv Funct Mater 2023;33:2303272.

87. Li X, Luo F, Sun TL, et al. Effect of salt on dynamic mechanical behaviors of polyampholyte hydrogels. Macromolecules 2023;56:535-44.

88. Fang Y, Huang S, Gong X, et al. Salt sensitive purely zwitterionic physical hydrogel for prevention of postoperative tissue adhesion. Acta Biomater 2023;158:239-51.

89. Yu X, Liu J, Xin Y, et al. Temperature and salt responsive zwitterionic polysulfamide-based nanogels with surface regeneration ability and controlled drug release. Polym Chem 2019;10:6423-31.

90. Shao Q, Mi L, Han X, et al. Differences in cationic and anionic charge densities dictate zwitterionic associations and stimuli responses. J Phys Chem B 2014;118:6956-62.

91. Sabu C, Henna TK, Raphey VR, Nivitha KP, Pramod K. Advanced biosensors for glucose and insulin. Biosens Bioelectron 2019;141:111201.

92. Erathodiyil N, Chan HM, Wu H, Ying JY. Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices. Mater Today 2020;38:84-98.

93. Huang KT, Hsieh PS, Dai LG, Huang CJ. Complete zwitterionic double network hydrogels with great toughness and resistance against foreign body reaction and thrombus. J Mater Chem B 2020;8:7390-402.

94. Rebelo R, Barbosa AI, Correlo VM, Reis RL. An outlook on implantable biosensors for personalized medicine. Engineering 2021;7:1696-9.

95. Dave KM, Han L, Jackson MA, Kadlecik L, Duvall CL, Manickam DS. DNA polyplexes of a phosphorylcholine-based zwitterionic polymer for gene delivery. Pharm Res 2020;37:176.

96. Xu Z, Han R, Liu N, Gao F, Luo X. Electrochemical biosensors for the detection of carcinoembryonic antigen with low fouling and high sensitivity based on copolymerized polydopamine and zwitterionic polymer. Sensor Actuat B Chem 2020;319:128253.

97. Lu S, Fu B, Zhang Z. Zwitterionic polymers coating antibiofouling photoelectrochemical aptasensor for in vivo antibiotic metabolism monitoring and tracking. Anal Chem 2022;94:14509-16.

98. Keefe AJ, Jiang S. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat Chem 2011;4:59-63.

99. Zhu Y, Song J, Zhang J, et al. Encapsulation of laccase within zwitterionic poly-carboxybetaine hydrogels for improved activity and stability. Catal Sci Technol 2018;8:5217-24.

100. Erfani A, Zarrintaj P, Seaberg J, Ramsey JD, Aichele CP. Zwitterionic poly(carboxybetaine) microgels for enzyme (chymotrypsin) covalent immobilization with extended stability and activity. J Appl Polym Sci 2021;138:50545.

101. Meyers SR, Grinstaff MW. Biocompatible and bioactive surface modifications for prolonged in vivo efficacy. Chem Rev 2012;112:1615-32.

102. Hawkins ML, Schott SS, Grigoryan B, et al. Anti-protein and anti-bacterial behavior of amphiphilic silicones. Polym Chem 2017;8:5239-51.

103. Sung HJ, Luk A, Murthy NS, et al. Poly(ethylene glycol) as a sensitive regulator of cell survival fate on polymeric biomaterials: the interplay of cell adhesion and pro-oxidant signaling mechanisms. Soft Matter 2010;6:5196-205.

104. Lee DU, Kayumov M, Park J, et al. Antibiofilm and antithrombotic hydrogel coating based on superhydrophilic zwitterionic carboxymethyl chitosan for blood-contacting devices. Bioact Mater 2024;34:112-24.

105. Yao M, Sun H, Guo Z, et al. A starch-based zwitterionic hydrogel coating for blood-contacting devices with durability and bio-functionality. Chem Eng J 2021;421:129702.

106. Du Q, Wang W, Zeng X, Luo X. Antifouling zwitterionic peptide hydrogel based electrochemical biosensor for reliable detection of prostate specific antigen in human serum. Anal Chim Acta 2023;1239:340674.

107. Wu H, Lee CJ, Wang H, et al. Highly sensitive and stable zwitterionic poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT) glucose biosensor. Chem Sci 2018;9:2540-6.

108. Xie X, Doloff JC, Yesilyurt V, et al. Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat Biomed Eng 2018;2:894-906.

109. Li X, Tang C, Liu D, et al. High-strength and nonfouling zwitterionic triple-network hydrogel in saline environments. Adv Mater 2021;33:2102479.

110. Yao M, Wei Z, Li J, et al. Microgel reinforced zwitterionic hydrogel coating for blood-contacting biomedical devices. Nat Commun 2022;13:5339.

111. Dong D, Tsao C, Hung HC, et al. High-strength and fibrous capsule-resistant zwitterionic elastomers. Sci Adv 2021;7:eabc5442.

112. Zhang W, Wu B, Sun S, Wu P. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat Commun 2021;12:4082.

113. Sun Y, Wang Y, Liu Y, Wu S, Zhang S, Niu W. Biomimetic chromotropic photonic-ionic skin with robust resilience, adhesion, and stability. Adv Funct Mater 2022;32:2204467.

114. Xu S, Yu JX, Guo H, et al. Force-induced ion generation in zwitterionic hydrogels for a sensitive silent-speech sensor. Nat Commun 2023;14:219.

115. Xu T, Zhang L, Song B, et al. High-strain sensitive zwitterionic hydrogels with swelling-resistant and controllable rehydration for sustainable wearable sensor. J Colloid Interface Sci 2022;620:14-23.

116. Zhang D, Tang Y, Zhang Y, et al. Highly stretchable, self-adhesive, biocompatible, conductive hydrogels as fully polymeric strain sensors. J Mater Chem A 2020;8:20474-85.

117. Huang Y, Xiao L, Zhou J, et al. Strong tough polyampholyte hydrogels via the synergistic effect of ionic and metal-ligand bonds. Adv Funct Mater 2021;31:2103917.

118. Bai J, Wang R, Wang X, et al. Biomineral calcium-ion-mediated conductive hydrogels with high stretchability and self-adhesiveness for sensitive iontronic sensors. Cell Rep Phys Sci 2021;2:100623. Available from: https://www.sciencedirect.com/science/article/pii/S2666386421003416. [Last accessed on 23 Feb 2024]

119. Wang H, Li X, Ji Y, et al. Highly transparent, mechanical, and self-adhesive zwitterionic conductive hydrogels with polyurethane as a cross-linker for wireless strain sensors. J Mater Chem B 2022;10:2933-43.

120. Huang H, Han L, Fu X, et al. Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin. Adv Elect Mater 2020;6:2000239.

121. Guo H, Bai M, Wen C, et al. A zwitterionic-aromatic motif-based ionic skin for highly biocompatible and glucose-responsive sensor. J Colloid Interface Sci 2021;600:561-71.

122. Guo H, Bai M, Zhu Y, et al. Pro-healing zwitterionic skin sensor enables multi-indicator distinction and continuous real-time monitoring. Adv Funct Mater 2021;31:2106406.

123. Lee DU, Kim SC, Choi DY, Jung WK, Moon MJ. Basic amino acid-mediated cationic amphiphilic surfaces for antimicrobial pH monitoring sensor with wound healing effects. Biomater Res 2023;27:14.

124. Li C, Zhang K, Cheng X, et al. Polymers for flexible energy storage devices. Prog Polym Sci 2023;143:101714.

125. Zhao F, Bae J, Zhou X, Guo Y, Yu G. Nanostructured functional hydrogels as an emerging platform for advanced energy technologies. Adv Mater 2018;30:1801796.

126. Wang Z, Yao S, Wang S, et al. Self-powered energy harvesting and implantable storage system based on hydrogel-enabled all-solid-state supercapacitor and triboelectric nanogenerator. Chem Eng J 2023;463:142427.

127. Dutta B, Ray SK. Synthesis of copolymer nanocomposite by in situ intercalative polymerization for batch and fixed bed adsorption. Polym Eng Sci 2023;63:2578-95.

128. Qiu M, Liu H, Tawiah B, Jia H, Fu S. Zwitterionic triple-network hydrogel electrolyte for advanced flexible zinc ion batteries. Compos Commun 2021;28:100942.

129. Lee JH, Yeon JS, Kim J, et al. Accelerated Li-ion transport through a zwitterion-anchored separator for high-performance Li-S batteries. J Mater Chem A 2021;9:25463-73.

130. Lee JH, Shin JC, Kim J, et al. Zwitterionic surfactant-stabilized ionogel electrolytes with high ionic conductivity for lithium secondary batteries. J Power Sources 2023;557:232565.

131. Leng K, Li G, Guo J, et al. A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries. Adv Funct Mater 2020;30:2001317.

132. Khalil H, Bhat A, Ireana Yusra A. Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 2012;87:963-79.

133. Mo F, Chen Z, Liang G, et al. Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv Energy Mater 2020;10:2000035.

134. Li C, Yang S, Guo Y, et al. Hydrogel electrolyte with high tolerance to a wide spectrum of pHs and compressive energy storage devices based on it. Small Methods 2023;7:e2201448.

135. Peng X, Liu H, Yin Q, et al. A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat Commun 2016;7:11782.

136. Amiri A, Bruno A, Polycarpou AA. Configuration-dependent stretchable all-solid-state supercapacitors and hybrid supercapacitors. Carbon Energy 2023;5:e320.

137. Zhang Z, Gao Y, Gao Y, Jia F, Gao G. A self-adhesive, self-healing zwitterionic hydrogel electrolyte for high-voltage zinc-ion hybrid supercapacitors. Chem Eng J 2023;452:139014.

138. Wei J, Zhou J, Su S, Jiang J, Feng J, Wang Q. Water-deactivated polyelectrolyte hydrogel electrolytes for flexible high-voltage supercapacitors. ChemSusChem 2018;11:3410-5.

139. Han L, Huang H, Fu X, et al. A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chem Eng J 2020;392:123733.

140. Guo WY, Mai T, Huang LZ, et al. Multifunctional MXene conductive zwitterionic hydrogel for flexible wearable sensors and arrays. ACS Appl Mater Interfaces 2023;15:24933-47.

141. Chen Y, Zhang C, Yin R, et al. Ultra-robust, high-adhesive, self-healing, and photothermal zwitterionic hydrogels for multi-sensory applications and solar-driven evaporation. Mater Horiz 2023;10:3807-20.

142. Tang L, Wu S, Li Y, et al. A super-tough ionic conductive hydrogel with anti-freezing, water retention, and self-regenerated properties for self-powered flexible sensor. Appl Mater Today 2023;32:101820.

143. Sui X, Guo H, Cai C, et al. Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities. Chem Eng J 2021;419:129478.

144. Jiao Q, Cao L, Zhao Z, Zhang H, Li J, Wei Y. Zwitterionic hydrogel with high transparency, ultrastretchability, and remarkable freezing resistance for wearable strain sensors. Biomacromolecules 2021;22:1220-30.

145. Zhang Y, Li T, Miao L, et al. A highly sensitive and ultra-stretchable zwitterionic liquid hydrogel-based sensor as anti-freezing ionic skin. J Mater Chem A 2022;10:3970-88.

146. Lan J, Zhou B, Yin C, Weng L, Ni W, Shi L. Zwitterionic dual-network strategy for highly stretchable and transparent ionic conductor. Polymer 2021;231:124111.

147. Cao L, Zhao Z, Li J, Yi Y, Wei Y. Gelatin-reinforced zwitterionic organohydrogel with tough, self-adhesive, long-term moisturizing and antifreezing properties for wearable electronics. Biomacromolecules 2022;23:1278-90.

148. Hu R, Yang X, Cui W, et al. An ultrahighly stretchable and recyclable starch-based gel with multiple functions. Adv Mater 2023;35:2303632.

149. Fu Q, Hao S, Zhang X, Zhao H, Xu F, Yang J. All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy Environ Sci 2023;16:1291-311.

150. Xiao S, He X, Zhao Z, et al. Strong anti-polyelectrolyte zwitterionic hydrogels with superior self-recovery, tunable surface friction, conductivity, and antifreezing properties. Eur Polym J 2021;148:110350.

151. Zhang G, Yang X, Shu H, Zhong W. Ultrahigh conductivity and antifreezing zwitterionic sulfobetaine hydrogel electrolyte for low-temperature resistance flexible supercapacitors. J Mater Chem A 2023;11:9097-111.

152. Fu Q, Hao S, Meng L, Xu F, Yang J. Engineering self-adhesive polyzwitterionic hydrogel electrolytes for flexible zinc-ion hybrid capacitors with superior low-temperature adaptability. ACS Nano 2021;15:18469-82.

153. Wang S, Zhang D, He X, et al. Polyzwitterionic double-network ionogel electrolytes for supercapacitors with cryogenic-effective stability. Chem Eng J 2022;438:135607.

154. Hu O, Lu J, Weng S, Hou L, Zhang X, Jiang X. An adhesive, anti-freezing, and environment stable zwitterionic organohydrogel for flexible all-solid-state supercapacitor. Polymer 2022;254:125109.

155. Sun W, Yang J, Ji X, et al. Antifreezing zwitterionic hydrogel electrolyte with high conductivity at subzero temperature for flexible sensor and supercapacitor. Sustain Mater Technol 2022;32:e00437.

156. Sun W, Xu Z, Qiao C, et al. Antifreezing proton zwitterionic hydrogel electrolyte via ionic hopping and grotthuss transport mechanism toward solid supercapacitor working at -50 °C. Adv Sci 2022;9:e2201679.

157. Lu X, Xu G, Lin Z, et al. Engineered exosomes enriched in netrin-1 modRNA promote axonal growth in spinal cord injury by attenuating inflammation and pyroptosis. Biomater Res 2023;27:3.

158. Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood 2013;122:491-8.

159. Bai T, Li J, Sinclair A, et al. Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel. Nat Med 2019;25:1566-75.

160. Liu P, Sun J, Peng W, et al. Zwitterionic betaines over HEPES as the new generation biocompatible pH buffers for cell culture. Bioact Mater 2023;24:376-86.

161. Xiao Z, Zheng X, An Y, et al. Zwitterionic hydrogel for sustained release of growth factors to enhance wound healing. Biomater Sci 2021;9:882-91.

162. Wang S, Liu R, Bi S, et al. Mussel-inspired adhesive zwitterionic composite hydrogel with antioxidant and antibacterial properties for wound healing. Colloid Surface B 2022;220:112914.

163. Chang Y, Shu SH, Shih YJ, Chu CW, Ruaan RC, Chen WY. Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. Langmuir 2010;26:3522-30.

164. Chang Y, Mallika Arjunan M, N’guérékata G, Kavitha V. On global solutions to fractional functional differential equations with infinite delay in Fréchet spaces. Comput Math Appl 2011;62:1228-37.

165. Yu Y, Vancso GJ, de Beer S. Substantially enhanced stability against degrafting of zwitterionic PMPC brushes by utilizing PGMA-linked initiators. Eur Polym J 2017;89:221-9.

166. Chen M, Briscoe WH, Armes SP, Klein J. Lubrication at physiological pressures by polyzwitterionic brushes. Science 2009;323:1698-701.

167. Hayes WC, Bodine AJ. Flow-independent viscoelastic properties of articular cartilage matrix. J Biomech 1978;11:407-19.

168. Charalambides MN, Goh SM, Wanigasooriya L, Williams JG, Xiao W. Effect of friction on uniaxial compression of bread dough. J Mater Sci 2005;40:3375-81.

169. Cai M, Yu Q, Zhou F, Liu W. Physicochemistry aspects on frictional interfaces. Friction 2017;5:361-82.

170. Wang Z, Li J, Liu Y, Luo J. Synthesis and characterizations of zwitterionic copolymer hydrogels with excellent lubrication behavior. Tribol Int 2020;143:106026.

171. Zhang Z, Chao T, Liu L, Cheng G, Ratner BD, Jiang S. Zwitterionic hydrogels: an in vivo implantation study. J Biomater Sci Polym Ed 2009;20:1845-59.

172. Zhang K, Yang J, Sun Y, et al. Gelatin-based composite hydrogels with biomimetic lubrication and sustained drug release. Friction 2022;10:232-46.

173. Galante R, Ghisleni D, Paradiso P, et al. Sterilization of silicone-based hydrogels for biomedical application using ozone gas: Comparison with conventional techniques. Mater Sci Eng C Mater Biol Appl 2017;78:389-97.

174. Willis SL, Court JL, Redman RP, et al. A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials 2001;22:3261-72.

175. Zhang D, Chen K, Wu L, Wang D, Ge S. Synthesis and characterization of PVA-HA-silk composite hydrogel by orthogonal experiment. J Bionic Eng 2012;9:234-42.

176. Ma R, Xiong D, Miao F, Zhang J, Peng Y. Novel PVP/PVA hydrogels for articular cartilage replacement. Mater Sci Eng C 2009;29:1979-83.

177. Wang Z, Li J, Jiang L, Xiao S, Liu Y, Luo J. Zwitterionic hydrogel incorporated graphene oxide nanosheets with improved strength and lubricity. Langmuir 2019;35:11452-62.

178. Rao P, Sun TL, Chen L, et al. Tough hydrogels with fast, strong, and reversible underwater adhesion based on a multiscale design. Adv Mater 2018;30:e1801884.

179. Sun H, Yan L, Zhang R, Lovell JF, Wu Y, Cheng C. A sulfobetaine zwitterionic polymer-drug conjugate for multivalent paclitaxel and gemcitabine co-delivery. Biomater Sci 2021;9:5000-10.

180. Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 2008;5:487-95.

181. Gafur A, Kristi N, Maruf A, Wang G, Ye Z. Transforming stealthy to sticky nanocarriers: a potential application for tumor therapy. Biomater Sci 2019;7:3581-93.

182. Yang F, Xu L, Kuang D, Ge Y, Guo G, Wang Y. Polyzwitterion-crosslinked hybrid tissue with antithrombogenicity, endothelialization, anticalcification properties. Chem Eng J 2021;410:128244.

183. Lin W, Kluzek M, Iuster N, et al. Cartilage-inspired, lipid-based boundary-lubricated hydrogels. Science 2020;370:335-8.

184. Li B, Yuan Z, Jain P, et al. De novo design of functional zwitterionic biomimetic material for immunomodulation. Sci Adv 2020;6:eaba0754.

185. Li B, Yuan Z, He Y, Hung HC, Jiang S. Zwitterionic nanoconjugate enables safe and efficient lymphatic drug delivery. Nano Lett 2020;20:4693-9.

186. Cabanach P, Pena-Francesch A, Sheehan D, et al. Zwitterionic 3D-printed non-immunogenic stealth microrobots. Adv Mater 2020;32:2003013.

187. Wang S, Zhang F, Yu G, et al. Zwitterionic-to-cationic charge conversion polyprodrug nanomedicine for enhanced drug delivery. Theranostics 2020;10:6629-37.

188. Yang W, Ella-Menye JR, Liu S, et al. Cross-linked carboxybetaine SAMs enable nanoparticles with remarkable stability in complex media. Langmuir 2014;30:2522-9.

189. Liu C, Faria AF, Ma J, Elimelech M. Mitigation of biofilm development on thin-film composite membranes functionalized with zwitterionic polymers and silver nanoparticles. Environ Sci Technol 2017;51:182-91.

190. Huang KT, Fang YL, Hsieh PS, Li CC, Dai NT, Huang CJ. Zwitterionic nanocomposite hydrogels as effective wound dressings. J Mater Chem B 2016;4:4206-15.

191. Zhang C, Sun W, Wang Y, et al. Gd-/CuS-loaded functional nanogels for MR/PA imaging-guided tumor-targeted photothermal therapy. ACS Appl Mater Interfaces 2020;12:9107-17.

192. Xue H, Wang D, Jin M, et al. Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition. Microsyst Nanoeng 2023;9:79.

193. Sankar Sivasankarapillai V, Sundararajan A, Chonnur Easwaran E, et al. Application of ionic liquids in rubber elastomers: perspectives and challenges. J Mol Liq 2023;382:121846.

194. Lin S, Liu J, Liu X, Zhao X. Muscle-like fatigue-resistant hydrogels by mechanical training. Proc Natl Acad Sci U S A 2019;116:10244-9.

195. Na Y, Kurokawa T, Katsuyama Y, et al. Structural characteristics of double network gels with extremely high mechanical strength. Macromolecules 2004;37:5370-4.

196. Diao W, Wu L, Ma X, et al. Highly stretchable, ionic conductive and self-recoverable zwitterionic polyelectrolyte-based hydrogels by introducing multiple supramolecular sacrificial bonds in double network. J Appl Polym Sci 2019;136:47783.

197. Mou X, Miao W, Zhang W, et al. Zwitterionic polymers-armored amyloid-like protein surface combats thrombosis and biofouling. Bioact Mater 2024;32:37-51.

198. Ren J, Liu Y, Wang Z, et al. An anti-swellable hydrogel strain sensor for underwater motion detection. Adv Funct Mater 2022;32:2107404.

199. Liu Y, Guo R, Wu T, et al. One zwitterionic injectable hydrogel with ion conductivity enables efficient restoration of cardiac function after myocardial infarction. Chem Eng J 2021;418:129352.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/