REFERENCES

1. Gür TM. Carbon dioxide emissions, capture, storage and utilization: review of materials, processes and technologies. Prog Energy Combust Sci 2022;89:100965.

2. Pan X, Shao T, Zheng X, Zhang Y, Ma X, Zhang Q. Energy and sustainable development nexus: a review. Energy Strategy Rev 2023;47:101078.

3. Li W, Luo J. High-temperature electrochemical devices based on dense ceramic membranes for CO2 conversion and utilization. Electrochem Energ Rev 2021;4:518-44.

4. Li Y, Zhang W, Zheng Y, et al. Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chem Soc Rev 2017;46:6345-78.

5. Cao J, Ji Y, Shao Z. Nanotechnologies in ceramic electrochemical cells. Chem Soc Rev 2024;53:450-501.

6. Wang W, Su C, Wu Y, Ran R, Shao Z. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem Rev 2013;113:8104-51.

7. Si F, Liu S, Liang Y, Fu X, Zhang J, Luo J. Fuel cell reactors for the clean cogeneration of electrical energy and value-added chemicals. Electrochem Energy Rev 2022;5:25.

8. Zhang W, Hu X, Zhou Y, et al. A solid oxide fuel cell runs on hydrocarbon fuels with exceptional durability and power output. Adv Energy Mater 2022;12:2202928.

9. Song Y, Zhang X, Xie K, Wang G, Bao X. High-temperature CO2 electrolysis in solid oxide electrolysis cells: developments, challenges, and prospects. Adv Mater 2019;31:1902033.

10. Boldrin P, Brandon NP. Progress and outlook for solid oxide fuel cells for transportation applications. Nat Catal 2019;2:571-7.

11. Cao J, Ji Y, Shao Z. Perovskites for protonic ceramic fuel cells: a review. Energy Environ Sci 2022;15:2200-32.

12. Cheng Z, Wang J, Choi Y, Yang L, Lin MC, Liu M. From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy Environ Sci 2011;4:4380.

13. Connor PA, Yue X, Savaniu CD, et al. Tailoring SOFC electrode microstructures for improved performance. Adv Energy Mater 2018;8:1800120.

14. Wang JH, Cheng Z, Brédas JL, Liu M. Electronic and vibrational properties of nickel sulfides from first principles. J Chem Phys 2007;127:214705.

15. Gong M, Liu X, Trembly J, Johnson C. Sulfur-tolerant anode materials for solid oxide fuel cell application. J Power Sources 2007;168:289-98.

16. Yang L, Cheng Z, Liu M, Wilson L. New insights into sulfur poisoning behavior of Ni-YSZ anode from long-term operation of anode-supported SOFCs. Energy Environ Sci 2010;3:1804-9.

17. Boldrin P, Ruiz-Trejo E, Mermelstein J, Bermúdez Menéndez JM, Ramı Rez Reina T, Brandon NP. Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis. Chem Rev 2016;116:13633-84.

18. Li Y, Zhan Z, Xia C. Highly efficient electrolysis of pure CO2 with symmetrical nanostructured perovskite electrodes. Catal Sci Technol 2018;8:980-4.

19. Wang Z, Tian Y, Li Y. Direct CH4 fuel cell using Sr2FeMoO6 as an anode material. J Power Sources 2011;196:6104-9.

20. Cernea M, Vasiliu F, Bartha C, Plapcianu C, Mercioniu I. Characterization of ferromagnetic double perovskite Sr2FeMoO6 prepared by various methods. Ceram Int 2014;40:11601-9.

21. Cernea M, Vasiliu F, Plapcianu C, et al. Preparation by sol-gel and solid state reaction methods and properties investigation of double perovskite Sr2FeMoO6. J Eur Ceram Soc 2013;33:2483-90.

22. Rager J, Zipperle M, Sharma A, Macmanus-Driscoll JL. Oxygen stoichiometry in Sr2FeMoO6, the determination of Fe and Mo valence states, and the chemical phase diagram of SrO-Fe3O4-MoO3. J Am Ceram Soc 2004;87:1330-5.

23. Farzin YA, Babaei A, Ataie A. Low-temperature synthesis of Sr2FeMoO6 double perovskite; structure, morphology, and magnetic properties. Ceram Int 2020;46:16867-78.

24. Das R, Chaudhuri U, Mahendiran R. Microwave magnetoresistance and microwave absorption in Sr2FeMoO6. ACS Appl Electron Mater 2021;3:3072-8.

25. Zhai Y, Qiao J, Huo G, Han S. Synthesis, magnetic and electrical transport properties of magnetoresistance material Sr2FeMoO6 by microwave sintering. J Magn Magn Mater 2012;324:2006-10.

26. Li XY, Yao ZF, Zhang LY, Zheng GH, Dai ZX, Chen KY. Generation of oxygen vacancies on Sr2FeMoO6 to improve its photocatalytic performance through a novel preparation method involving pH adjustment and use of surfactant. Appl Surf Sci 2019;480:262-75.

27. Mami A, Boukhachem A, Mellouki I, Amlouk M. Synthesis and physical characterization of Sr2FeMoO6 and Sr3FeMoO7 thin films. Mater Lett 2019;243:77-80.

28. Valdés J, Reséndiz D, Cuán Á, et al. Sol-gel synthesis of the double perovskite Sr2FeMoO6 by microwave technique. Material 2021;14:3876.

29. Kumar A, Dutta S, Kim S, et al. Solid-state reaction synthesis of nanoscale materials: strategies and applications. Chem Rev 2022;122:12748-863.

30. Raittila J, Salminen T, Suominen T, Schlesier K, Paturi P. Nanocrystalline Sr2FeMoO6 prepared by citrate-gel method. J Phys Chem Solids 2006;67:1712-8.

31. Xi X, Liu J, Fan Y, et al. Reducing d-p band coupling to enhance CO2 electrocatalytic activity by Mg-doping in Sr2FeMoO6-δ double perovskite for high performance solid oxide electrolysis cells. Nano Energy 2021;82:105707.

32. Du Z, Zhao H, Li S, et al. Exceptionally high performance anode material based on lattice structure decorated double perovskite Sr2FeMo2/3Mg1/3O6-δ for solid oxide fuel cells. Adv Energy Mater 2018;8:1800062.

33. Das R, Choudhary RNP, Pradhan D. Structural and electrical characteristics of double perovskite: Sr2FeMoO6. Mater Sci Eng B 2022;281:115715.

34. Wang J, Kumar A, Wardini JL, et al. Exsolution-driven surface transformation in the host oxide. Nano Lett 2022;22:5401-8.

35. Kousi K, Tang C, Metcalfe IS, Neagu D. Emergence and future of exsolved materials. Small 2021;17:e2006479.

36. Ding D, Li X, Lai SY, Gerdes K, Liu M. Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ Sci 2014;7:552-75.

37. Du Z, Zhao H, Yi S, et al. High-performance anode material Sr2FeMo0.65Ni0.35O6-δ with in situ exsolved nanoparticle catalyst. ACS Nano 2016;10:8660-9.

38. Xi X, Fan Y, Zhang J, Luo J, Fu X. In situ construction of hetero-structured perovskite composites with exsolved Fe and Cu metallic nanoparticles as efficient CO2 reduction electrocatalysts for high performance solid oxide electrolysis cells. J Mater Chem A 2022;10:2509-18.

39. Yang M, Yao Z, Liu S, et al. Bismuth doped Sr2Fe1.5Mo0.5O6-δ double perovskite as a robust fuel electrode in ceramic oxide cells for direct CO2 electrolysis. J Mater Sci Technol 2023;164:160-7.

40. Muñoz-García AB, Pavone M. K-doped Sr2Fe1.5Mo0.5O6-δ predicted as a bifunctional catalyst for air electrodes in proton-conducting solid oxide electrochemical cells. J Mater Chem A 2017;5:12735-9.

41. Muñoz-García AB, Pavone M, Carter EA. Effect of antisite defects on the formation of oxygen vacancies in Sr2FeMoO6: implications for ion and electron transport. Chem Mater 2011;23:4525-36.

42. Reyes AM, Arredondo Y, Navarro O. Effect of cationic disorder on the magnetic moment of Sr2FeMoO6: ab initio calculations. J Phys Chem C 2016;120:4048-52.

43. Mishra R, Restrepo OD, Woodward PM, Windl W. First-principles study of defective and nonstoichiometric Sr2FeMoO6. Chem Mater 2010;22:6092-102.

44. Sunarso J, Hashim SS, Zhu N, Zhou W. Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: a review. Prog Energy Combust Sci 2017;61:57-77.

45. Yin W, Weng B, Ge J, Sun Q, Li Z, Yan Y. Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ Sci 2019;12:442-62.

46. Kozuka H, Ohbayashi K, Koumoto K. Electronic conduction in La-based perovskite-type oxides. Sci Technol Adv Mater 2015;16:026001.

47. Bartha C, Plapcianu C, Crisan A, Enculescu M, Leca A. Structural and magnetic properties of Sr2FeMoO6 obtained at low temperatures. Available from: https://www.chalcogen.ro/773_BarthaC.pdf. [Last accessed on 21 Feb 2024].

48. Saloaro M, Hoffmann M, Adeagbo WA, et al. Toward versatile Sr2FeMoO6-based spintronics by exploiting nanoscale defects. ACS Appl Mater Interfaces 2016;8:20440-7.

49. Xi X, Liu J, Luo W, et al. Unraveling the enhanced kinetics of Sr2Fe1+xMo1-xO6-δ electrocatalysts for high-performance solid oxide cells. Adv Energy Mater 2021;11:2102845.

50. Kobayashi KI, Kimura T, Sawada H, Terakura K, Tokura Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 1998;395:677-680.

51. Phuyal D, Mukherjee S, Panda SK, et al. Nonlocal interactions in the double perovskite Sr2FeMoO6 from core-level X-ray spectroscopy. J Phys Chem C 2021;125:11249-56.

52. Varma A, Mukasyan AS, Rogachev AS, Manukyan KV. Solution combustion synthesis of nanoscale materials. Chem Rev 2016;116:14493-586.

53. Feinle A, Elsaesser MS, Hüsing N. Sol-gel synthesis of monolithic materials with hierarchical porosity. Chem Soc Rev 2016;45:3377-99.

54. Li C, Cailei Y, Junmin X, Wang J. Mechanically activated synthesis and magnetoresistance of nanocrystalline double perovskite Sr2FeMoO6. J Am Ceram Soc 2005;88:2635-8.

55. Martynczuk J, Arnold M, Wang H, Caro J, Feldhoff A. How (Ba0.5Sr0.5)(Fe0.8Zn0.2)O3-δ and (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ perovskites form via an EDTA/citric acid complexing method. Adv Mater 2007;19:2134-40.

56. Hu Y, Sun Y, Wang X. Effect of gas flow rate on transport properties of Sr2FeMoO6. J Magn Magn Mater 2022;553:169234.

57. Angervo I, Saloaro M, Tikkanen J, Huhtinen H, Paturi P. Improving the surface structure of high quality Sr2FeMoO6 thin films for multilayer structures. Appl Surf Sci 2017;396:754-9.

58. Jacobo SE. Novel method of synthesis for double-perovskite Sr2FeMoO6. J Mater Sci 2005;40:417-21.

59. Takeda T, Ito M, Kikkawa S. Preparation of magneto-resistive Sr2FeMoO6 through molybdic acid gelation. J Alloys Compd 2008;449:93-5.

60. E P, Zhang JS, Yao LD, et al. The structural and electrical properties of nano-scale Sr2FeMoO6 under high pressures. J Mater Sci 2006;41:7374-9.

61. Yang D, Yang T, Sun Q, Chen Y, Lampronti GI. The annealing effects on the crystal structure, magnetism and microstructure of the ferromagnetic double perovskite Sr2FeMoO6 synthesized via spark plasma sintering. J Alloys Compd 2017;728:337-42.

62. Yang CW, Fang TT. Structures and development mechanism of the anti-phase boundaries in Sr2FeMoO6. J Electrochem Soc 2012;159:P35.

63. Taylor DD, Schreiber NJ, Brown CM, Arevalo-Lopez AM, Rodriguez EE. Stabilization of cubic Sr2FeMoO6 through topochemical reduction. Chem Commun 2015;51:12201-4.

64. Wang K, Sui Y. Influence of the modulating interfacial state on Sr2FeMoO6 powder magnetoresistance properties. Solid State Commun 2004;129:135-8.

65. Zhang L, Zhou Q, He Q, He T. Double-perovskites A2FeMoO6-δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells. J Power Sources 2010;195:6356-66.

66. Huan Y, Li Y, Yin B, Ding D, Wei T. High conductive and long-term phase stable anode materials for SOFCs: A2FeMoO6 (A = Ca, Sr, Ba). J Power Sources 2017;359:384-90.

67. Xi X, Cao Z, Shen X, et al. In situ embedding of CoFe nanocatalysts into Sr3FeMoO7 matrix as high-performance anode materials for solid oxide fuel cells. J Power Sources 2020;459:228071.

68. Liu Q, Dong X, Xiao G, Zhao F, Chen F. A novel electrode material for symmetrical SOFCs. Adv Mater 2010;22:5478-82.

69. Liu Q, Yang C, Dong X, Chen F. Perovskite Sr2Fe1.5Mo0.5O6-δ as electrode materials for symmetrical solid oxide electrolysis cells. Int J Hydrogen Energy 2010;35:10039-44.

70. Liu Q, Bugaris DE, Xiao G, et al. Sr2Fe1.5Mo0.5O6-δ as a regenerative anode for solid oxide fuel cells. J Power Sources 2011;196:9148-53.

71. Zheng Y, Chen Z, Zhang J. Solid oxide electrolysis of H2O and CO2 to produce hydrogen and low-carbon fuels. Electrochem Energ Rev 2021;4:508-17.

72. Fabbri E, Nachtegaal M, Binninger T, et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat Mater 2017;16:925-31.

73. Long X, Zhao B, Zhao Q, et al. Ru-RuO2 nano-heterostructures stabilized by the sacrificing oxidation strategy of Mn3O4 substrate for boosting acidic oxygen evolution reaction. Appl Catal B Environ 2024;343:123559.

74. Chen H, Liu J, Wu X, et al. Pt-Co electrocatalysts: syntheses, morphologies, and applications. Small 2022;18:e2204100.

75. Chen H, Wu X, Liu D, et al. Highly efficient C@Ni-Pd bifunctional electrocatalyst for energy-saving hydrogen evolution and value-added chemicals co-production from ethanol aqueous solution. Chem Eng J 2023;474:145639.

76. Tomar AK, Pan UN, Kim NH, Lee JH. Enabling lattice oxygen participation in a triple perovskite oxide electrocatalyst for the oxygen evolution reaction. ACS Energy Lett 2023;8:565-73.

77. Zhu K, Wu T, Li M, Lu R, Zhu X, Yang W. Perovskites decorated with oxygen vacancies and Fe-Ni alloy nanoparticles as high-efficiency electrocatalysts for the oxygen evolution reaction. J Mater Chem A 2017;5:19836-45.

78. Tan L, Jiang Z, Gao Y, Zhang S. Synergistic interaction between in situ exsolved and phosphorized nanoparticles and perovskite oxides for enhanced electrochemical water splitting. Int J Hydrogen Energy 2022;47:20016-26.

79. Shang C, Xiao X, Xu Q. Coordination chemistry in modulating electronic structures of perovskite-type oxide nanocrystals for oxygen evolution catalysis. Coord Chem Rev 2023;485:215109.

80. Kim BJ, Fabbri E, Abbott DF, et al. Functional role of Fe-doping in Co-based perovskite oxide catalysts for oxygen evolution reaction. J Am Chem Soc 2019;141:5231-40.

81. Deng H, Feng C, Zhang W, et al. The electrolyte-layer free fuel cell using a semiconductor-ionic Sr2Fe1.5Mo0.5O6-δ - Ce0.8Sm0.2O2-δ composite functional membrane. Int J Hydrogen Energy 2017;42:25001-7.

82. Rath MK, Lee K. Superior electrochemical performance of non-precious Co-Ni-Mo alloy catalyst-impregnated Sr2FeMoO6-δ as an electrode material for symmetric solid oxide fuel cells. Electrochim Acta 2016;212:678-85.

83. Wang W, Li H, Regalado Vera CY, et al. Improving the performance for direct electrolysis of CO2 in solid oxide electrolysis cells with a Sr1.9Fe1.5Mo0.5O6-δ electrode via infiltration of Pr6O11 nanoparticles. J Mater Chem A 2023;11:9039-48.

84. Zhang L, Xu C, Sun W, et al. Constructing perovskite/alkaline-earth metal composite heterostructure by infiltration to revitalize CO2 electrolysis. Sep Purif Technol 2022;298:121475.

85. Yu W, Zhang D, Zhang X, Liu T, Wang Y. Advanced Ru-infiltrated perovskite oxide electrodes for boosting the performance of syngas fueled solid oxide fuel cell. ChemElectroChem 2022;9:e202200024.

86. Osinkin D, Beresnev S, Bogdanovich N. Influence of Pr6O11 on oxygen electroreduction kinetics and electrochemical performance of Sr2Fe1.5Mo0.5O6-δ based cathode. J Power Sources 2018;392:41-7.

87. Li M, Hou J, Fan Y, Xi X, Fu X, Luo J. Interface modification of Ru-CeO2 co-infiltrated SFM electrode and construction of SDC/YSZ bilayer electrolyte for direct CO2 electrolysis. Electrochim Acta 2022;426:140771.

88. Ji Q, Bi L, Zhang J, Cao H, Zhao XS. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ Sci 2020;13:1408-28.

89. Hwang J, Rao RR, Giordano L, Katayama Y, Yu Y, Shao-Horn Y. Perovskites in catalysis and electrocatalysis. Science 2017;358:751-6.

90. Mahato N, Banerjee A, Gupta A, Omar S, Balani K. Progress in material selection for solid oxide fuel cell technology: a review. Prog Mater Sci 2015;72:141-337.

91. Gao Z, Mogni LV, Miller EC, Railsback JG, Barnett SA. A perspective on low-temperature solid oxide fuel cells. Energy Environ Sci 2016;9:1602-44.

92. Myung JH, Neagu D, Miller DN, Irvine JT. Switching on electrocatalytic activity in solid oxide cells. Nature 2016;537:528-31.

93. Liu S, Liu Q, Fu X, Luo J. Cogeneration of ethylene and energy in protonic fuel cell with an efficient and stable anode anchored with in-situ exsolved functional metal nanoparticles. Appl Catal B Environ 2018;220:283-9.

94. Neagu D, Oh TS, Miller DN, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat Commun 2015;6:8120.

95. Calì E, Thomas MP, Vasudevan R, et al. Real-time insight into the multistage mechanism of nanoparticle exsolution from a perovskite host surface. Nat Commun 2023;14:1754.

96. Zhang S, Jiang Y, Han H, Li Y, Xia C. Perovskite oxyfluoride ceramic with in situ exsolved Ni-Fe nanoparticles for direct CO2 electrolysis in solid oxide electrolysis cells. ACS Appl Mater Interfaces 2022;14:28854-64.

97. Hu Y, Han H, Hu H, et al. Potassium doping effects on the structure and magnetic properties of Sr2FeMoO6. J Alloys Compd 2012;526:1-5.

98. Yang X, Chen J, Panthi D, et al. Electron doping of Sr2FeMoO6-δ as high performance anode materials for solid oxide fuel cells. J Mater Chem A 2019;7:733-43.

99. Azizi F, Kahoul A, Azizi A. Effect of La doping on the electrochemical activity of double perovskite oxide Sr2FeMoO6 in alkaline medium. J Alloys Compd 2009;484:555-60.

100. Neagu D, Tsekouras G, Miller DN, Ménard H, Irvine JT. In situ growth of nanoparticles through control of non-stoichiometry. Nat Chem 2013;5:916-23.

101. Mccolm TD, Irvine JTS. B site doped strontium titanate as a potential SOFC substrate. Ionics 2001;7:116-21.

102. Sun Y, Li J, Zeng Y, et al. A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes. J Mater Chem A 2015;3:11048-56.

103. Yang G, Feng J, Sun W, et al. The characteristic of strontium-site deficient perovskites SrxFe1.5Mo0.5O6-δ (x = 1.9-2.0) as intermediate-temperature solid oxide fuel cell cathodes. J Power Sources 2014;268:771-7.

104. Feng J, Qiao J, Wang W, Wang Z, Sun W, Sun K. Development and performance of anode material based on A-site deficient Sr2-xFe1.4Ni0.1Mo0.5O6-δ perovskites for solid oxide fuel cells. Electrochim Acta 2016;215:592-9.

105. Tan T, Wang Z, Huang K, Yang C. High-performance co-production of electricity and light olefins enabled by exsolved NiFe alloy nanoparticles from a double-perovskite oxide anode in solid oxide-ion-conducting fuel cells. ACS Nano 2023;17:13985-96.

106. Wang Z, Tan T, Du K, Zhang Q, Liu M, Yang C. A high-entropy layered perovskite coated with in situ exsolved core-shell CuFe@FeOx nanoparticles for efficient CO2 electrolysis. Adv Mater 2023;36:2312119.

107. Xiao G, Liu Q, Dong X, Huang K, Chen F. Sr2Fe4/3Mo2/3O6 as anodes for solid oxide fuel cells. J Power Sources 2010;195:8071-4.

108. Lv H, Lin L, Zhang X, et al. In situ exsolved FeNi3 nanoparticles on nickel doped Sr2Fe1.5Mo0.5O6-δ perovskite for efficient electrochemical CO2 reduction reaction. J Mater Chem A 2019;7:11967-75.

109. Qiu P, Yang X, Wang W, et al. Redox-reversible electrode material for direct hydrocarbon solid oxide fuel cells. ACS Appl Mater Interfaces 2020;12:13988-95.

110. He F, Hou M, Zhu F, et al. Building efficient and durable hetero-interfaces on a perovskite-based electrode for electrochemical CO2 reduction. Adv Energy Mater 2022;12:2202175.

111. Muñoz-García AB, Bugaris DE, Pavone M, et al. Unveiling structure-property relationships in Sr2Fe1.5Mo0.5O6-δ, an electrode material for symmetric solid oxide fuel cells. J Am Chem Soc 2012;134:6826-33.

112. Ye L, Zhang M, Huang P, et al. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat Commun 2017;8:14785.

113. Sun YF, Zhang YQ, Chen J, et al. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent. Nano Lett 2016;16:5303-9.

114. Yang Y, Li J, Sun Y. The metal/oxide heterointerface delivered by solid-based exsolution strategy: a review. Chem Eng J 2022;440:135868.

115. Liu S, Liu Q, Luo JL. Highly stable and efficient catalyst with in situ exsolved Fe-Ni alloy nanospheres socketed on an oxygen deficient perovskite for direct CO2 electrolysis. ACS Catal 2016;6:6219-28.

116. Tsvetkov N, Lu Q, Sun L, Crumlin EJ, Yildiz B. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. Nat Mater 2016;15:1010-6.

117. Song Y, Min J, Guo Y, et al. Surface activation by single Ru atoms for enhanced high-temperature CO2 electrolysis. Angew Chem Int Ed Engl 2024;63:e202313361.

118. Kim YH, Jeong H, Won BR, Myung JH. Exsolution modeling and control to improve the catalytic activity of nanostructured electrodes. Adv Mater 2023;35:e2208984.

119. Gu J, Hsu CS, Bai L, Chen HM, Hu X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019;364:1091-4.

120. Lv H, Lin L, Zhang X, et al. In situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a Co-doped Sr2Fe1.5Mo0.5O6-δ cathode for CO2 electrolysis. Adv Mater 2020;32:e1906193.

121. Lv H, Lin L, Zhang X, et al. Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6-δ via repeated redox manipulations for CO2 electrolysis. Nat Commun 2021;12:5665.

122. Weber ML, Wilhelm M, Jin L, et al. Exsolution of embedded nanoparticles in defect engineered perovskite layers. ACS Nano 2021;15:4546-60.

123. Opitz AK, Nenning A, Vonk V, et al. Understanding electrochemical switchability of perovskite-type exsolution catalysts. Nat Commun 2020;11:4801.

124. Zhang BW, Zhu MN, Gao MR, et al. Boosting the stability of perovskites with exsolved nanoparticles by B-site supplement mechanism. Nat Commun 2022;13:4618.

125. Zhang BW, Zhu MN, Gao MR, et al. Phase transition engineering of host perovskite toward optimal exsolution-facilitated catalysts for carbon dioxide electrolysis. Angew Chem Int Ed Engl 2023;62:e202305552.

126. Hong J, Heo SJ, Singh P. Water mediated growth of oriented single crystalline SrCO3 nanorod arrays on strontium compounds. Sci Rep 2021;11:3368.

127. Fu G, Kang X, Zhang Y, et al. Capturing critical gem-diol intermediates and hydride transfer for anodic hydrogen production from 5-hydroxymethylfurfural. Nat Commun 2023;14:8395.

128. Sun Z, Lin L, He J, et al. Regulating the spin state of FeIII enhances the magnetic effect of the molecular catalysis mechanism. J Am Chem Soc 2022;144:8204-13.

129. Liu J, Luo W, Wang L, Zhang J, Fu X, Luo J. Toward excellence of electrocatalyst design by emerging descriptor-oriented machine learning. Adv Funct Mater 2022;32:2110748.

130. Li J, Yu Y, Xu S, Yan W, Mu S, Zhang JN. Function of electron spin effect in electrocatalysts. 2023. Available from: https://www.whxb.pku.edu.cn/EN/10.3866/PKU.WHXB202302049. [Last accessed on 21 Feb 2024].

131. He ZD, Tesch R, Eslamibidgoli MJ, Eikerling MH, Kowalski PM. Low-spin state of Fe in Fe-doped NiOOH electrocatalysts. Nat Commun 2023;14:3498.

132. Chen A, Zhang X, Zhou Z. Machine learning: accelerating materials development for energy storage and conversion. InfoMat 2020;2:553-76.

133. Zhai S, Xie H, Cui P, et al. A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells. Nat Energy 2022;7:866-75.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/