REFERENCES

1. Du X, Li Y, Long J, et al. Fabrication of cisplatin-loaded polydopamine nanoparticles via supramolecular self-assembly for photoacoustic imaging guided chemo-photothermal cancer therapy. Appl Mater 2021;23:101019.

2. Song IA, Park HY, Oh TK. Effect of preoperative psychiatric morbidity on postoperative outcomes of lung cancer surgery: a nationwide cohort study in South Korea. J Psychosom Res 2022;161:111002.

3. Hong S, Li Z, Li C, Dong C, Shuang S. β-Cyclodextrin grafted polypyrrole magnetic nanocomposites toward the targeted delivery and controlled release of doxorubicin. App Surf Sci 2018;427:1189-98.

4. Zhao Q, Li X, Lu J, et al. TPGS and cypate gated mesoporous carbon for enhanced thermochemotherapy of tumor. Colloids Surf A Physicochem Eng Asp 2020;591:124544.

5. Sun R, Ge Y, Liu H, He P, Song W, Zhang X. Erythrocyte membrane-encapsulated glucose oxidase and manganese/ferrite nanocomposite as a biomimetic “all in one” nanoplatform for cancer therapy. ACS Appl Bio Mater 2021;4:701-10.

6. Yin H, Zhou B, Zhao C, et al. 2D core/shell-structured mesoporous silicene@silica for targeted and synergistic NIR-II-Induced photothermal ablation and hypoxia-activated chemotherapy of tumors. Adv Funct Mater 2021;31:2102043.

7. Niu Q, Sun Q, Bai R, et al. Progress of nanomaterials-based photothermal therapy for oral squamous cell carcinoma. Int J Mol Sci 2022;23:10428.

8. Chen H, Zeng X, Tham HP, et al. NIR-light-activated combination therapy with a precise ratio of photosensitizer and prodrug using a host-guest strategy. Angew Chem Int Ed Engl 2019;58:7641-6.

9. Chen H, Sun T, Zeng W, et al. NIR-light-intensified hypoxic microenvironment for cascaded supra-prodrug activation and synergistic chemo/photodynamic cancer therapy. ACS Materials Lett 2022;4:111-9.

10. Li QL, Wang D, Cui Y, et al. AIEgen-functionalized mesoporous silica gated by cyclodextrin-modified cus for cell imaging and chemo-photothermal cancer therapy. ACS Appl Mater Interfaces 2018;10:12155-63.

11. Wu MX, Yan HJ, Gao J, et al. Multifunctional supramolecular materials constructed from polypyrrole@uio-66 nanohybrids and pillararene nanovalves for targeted chemophotothermal therapy. ACS Appl Mater Interfaces 2018;10:34655-63.

12. Xie Y, Wang M, Sun Q, Wang D, Luo S, Li C. PtBi-β-CD-Ce6 nanozyme for combined trimodal imaging-guided photodynamic therapy and NIR-II responsive photothermal therapy. Inorg Chem 2022;61:6852-60.

13. Wei C, Jin X, Yin P, Wu C, Zhang W. Carbon spheres for photothermal therapy of tumor cells: rapid preparation and high photothermal effect. J Inorg Mater 2021;36:1208.

14. Yu Y, Tang D, Liu C, et al. Biodegradable polymer with effective near-infrared-ii absorption as a photothermal agent for deep tumor therapy. Adv Mater 2022;34:e2105976.

15. Herrera-españa AD, Höpfl H, Morales-rojas H. Host-guest properties of a trigonal iminoboronate ester cage self-assembled from hexahydroxytriphenylene. Eur J Org Chem 2022:2022.

16. Song Q, Yang J, Rho JY, Perrier S. Supramolecular switching of the self-assembly of cyclic peptide-polymer conjugates via host-guest chemistry. Chem Commun (Camb) 2019;55:5291-4.

17. Xie X, Gao B, Ma Z, et al. Host-guest interaction driven peptide assembly into photoresponsive two-dimensional nanosheets with switchable antibacterial activity. CCS Chem 2021;3:1949-62.

18. Xu D, Zhou Q, Dai X, et al. Cucurbit[8]uril-mediated phosphorescent supramolecular foldamer for antibiotics sensing in water and cells. Chin Chem Lett 2022;33:851-4.

19. Li Y, Wen J, Li J, Wu Z, Li W, Yang K. Recent applications of pillar[n]arene-based host-guest recognition in chemosensing and imaging. ACS Sens 2021;6:3882-97.

20. Xia D, Ma J, Wang P. A hydrogen sulfide-sensitive supramolecular polymer constructed by crown ether-based host-guest interaction and Ag-coordination. Sens Actuators B Chem 2019;279:197-203.

21. Teyssandier J, Feyter S, Mali KS. Host-guest chemistry in two-dimensional supramolecular networks. Chem Commun (Camb) 2016;52:11465-87.

22. Wang Z, Zhu H, Tu W, et al. Host/guest nanostructured photoanodes integrated with targeted enhancement strategies for photoelectrochemical water splitting. Adv Sci (Weinh) 2022;9:e2103744.

23. Zhang Y, Ma S, Liu X, et al. Supramolecular assembled programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy. Adv Mater 2021;33:e2007293.

24. Yu R, Yang Y, He J, Li M, Guo B. Novel supramolecular self-healing silk fibroin-based hydrogel via host-guest interaction as wound dressing to enhance wound healing. Chem Eng J 2021;417:128278.

25. Yang X, Wu B, Zhou J, et al. Controlling intracellular enzymatic self-assembly of peptide by host-guest complexation for programming cancer cell death. Nano Lett 2022;22:7588-96.

26. Yue L, Yang K, Lou X, Yang Y, Wang R. Versatile roles of macrocycles in organic-inorganic hybrid materials for biomedical applications. Matter 2020;3:1557-88.

27. Xu Z, Zhang Y, Zhou W, et al. NIR-II-activated biocompatible hollow nanocarbons for cancer photothermal therapy. J Nanobiotechnology 2021;19:137.

28. Song X, Lu X, Sun B, et al. Conjugated Polymer nanoparticles with absorption beyond 1000 nm for nir-ii fluorescence imaging system guided NIR-II photothermal therapy. ACS Appl Polym Mater 2020;2:4171-9.

29. Sun X, Wang J, Wang Z, et al. Gold nanorod@void@polypyrrole yolk@shell nanostructures: synchronous regulation of photothermal and drug delivery performance for synergistic cancer therapy. J Colloid Interface Sci 2022;610:89-97.

30. Wang J, Zhu C, Han J, et al. Controllable synthesis of gold nanorod/conducting polymer core/shell hybrids toward in vitro and in vivo near-infrared photothermal therapy. ACS Appl Mater Interfaces 2018;10:12323-30.

31. Wang J, Han J, Zhu C, et al. Gold nanorods/polypyrrole/m-SiO(2) core/shell hybrids as drug nanocarriers for efficient chemo-photothermal therapy. Langmuir 2018;34:14661-9.

32. Wang H, Xue KF, Yang Y, Hu H, Xu JF, Zhang X. In situ hypoxia-induced supramolecular perylene diimide radical anions in tumors for photothermal therapy with improved specificity. J Am Chem Soc 2022;144:2360-7.

33. Cen M, Ding Y, Wang J, et al. Cationic water-soluble pillar[5]arene-modified cu(2-x)se nanoparticles: supramolecular trap for atp and application in targeted photothermal therapy in the NIR-II window. ACS Macro Lett 2020;9:1558-62.

34. Yu Z, Chan WK, Zhang Y, Tan TTY. Near-infrared-II activated inorganic photothermal nanomedicines. Biomaterials 2021;269:120459.

35. Chu N, Cong L, Yue J, Xu W, Xu S. Fluorescent imaging probe targeting mitochondria based on supramolecular host-guest assembly and disassembly. ACS Omega 2022;7:34268-77.

36. Li H, Wei R, Yan GH, et al. Smart self-assembled nanosystem based on water-soluble pillararene and rare-earth-doped upconversion nanoparticles for ph-responsive drug delivery. ACS Appl Mater Interfaces 2018;10:4910-20.

37. Huang C, Zhang H, Hu Z, Zhang Y, Ji X. Enhancing mechanical performance of a polymer material by incorporating pillar[5]arene-based host-guest interactions. Gels 2022;8:475.

38. Yoon HJ, Lee HS, Lim JY, Park JH. Liposomal indocyanine green for enhanced photothermal therapy. ACS Appl Mater Interfaces 2017;9:5683-91.

39. Zhu S, Wang S, Liu C, Lyu M, Huang Q. Cu-hemin nanosheets and indocyanine green co-loaded hydrogel for photothermal therapy and amplified photodynamic therapy. Front Oncol 2022;12:918416.

40. Sun R, Liu M, Xu Z, Song B, He Y, Wang H. Silicon-based nanoprobes cross the blood—brain barrier for photothermal therapy of glioblastoma. Nano Res 2022;15:7392-401.

41. Lin L, Liang X, Xu Y, Yang Y, Li X, Dai Z. Doxorubicin and indocyanine green loaded hybrid bicelles for fluorescence imaging guided synergetic chemo/photothermal therapy. Bioconjug Chem 2017;28:2410-9.

42. Ding Y, Wang C, Lu B, Yao Y. Enhancing the stability and photothermal conversion efficiency of ICG by pillar[5]arene-based host-guest interaction. Front Chem 2021;9:775436.

43. Leng C, Zhang X, Xu F, et al. Engineering gold nanorod-copper sulfide heterostructures with enhanced photothermal conversion efficiency and photostability. Small 2018;14:e1703077.

44. Tang M, Zhang Z, Ding C, et al. Two birds with one stone: innovative ceria-loaded gold@platinum nanospheres for photothermal-catalytic therapy of tumors. J Colloid Interface Sci 2022;627:299-307.

45. Lin X, Ye S, Kong C, et al. Polymeric ligand-mediated regioselective bonding of plasmonic nanoplates and nanospheres. J Am Chem Soc 2020;142:17282-6.

46. Cheng Q, Yue L, Li J, et al. Supramolecular tropism driven aggregation of nanoparticles in situ for tumor-specific bioimaging and photothermal therapy. Small 2021;17:e2101332.

47. Gao C, Wang Q, Li J, et al. In vivo hitchhiking of immune cells by intracellular self-assembly of bacteria-mimetic nanomedicine for targeted therapy of melanoma. Sci Adv 2022;8:eabn1805.

48. Han R, Wu S, Yan Y, Chen W, Tang K. Construction of ferrocene modified and indocyanine green loaded multifunctional mesoporous silica nanoparticle for simultaneous chemodynamic/photothermal/photodynamic therapy. Mater Today Commun 2021;26:101842.

49. Hu XY, Gao L, Mosel S, et al. From supramolecular vesicles to micelles: controllable construction of tumor-targeting nanocarriers based on host-guest interaction between a pillar[5]arene-based prodrug and a RGD-sulfonate guest. Small 2018;14:e1803952.

50. Wang Y, Jin M, Chen Z, et al. Tumor microenvironment responsive supramolecular glyco-nanovesicles based on diselenium-bridged pillar[5]arene dimer for targeted chemotherapy. Chem Commun (Camb) 2020;56:10642-5.

51. Xie B, Zhao H, Shui M, et al. Spermine-responsive intracellular self-aggregation of gold nanocages for enhanced chemotherapy and photothermal therapy of breast cancer. Small 2022;18:e2201971.

52. Cui FH, Li Q, Gao LH, et al. Condensed osmaquinolines with NIR-II absorption synthesized by Aryl C-H annulation and aromatization. Angew Chem Int Ed Engl 2022;61:e202211734.

53. Tang B, Li WL, Chang Y, et al. A supramolecular radical dimer: high-efficiency NIR-II photothermal conversion and therapy. Angew Chem Int Ed Engl 2019;58:15526-31.

54. Chen X, Wang Z, Sun X, et al. Photothermal supramolecular vesicles coassembled from pillar[5]arene and aniline tetramer for tumor eradication in NIR-I and NIR-II biowindows. Chem Eng J 2021;403:126423.

55. Tang Z, Tian W, Long H, et al. Subcellular-targeted near-infrared-responsive nanomedicine with synergistic chemo-photothermal therapy against multidrug resistant cancer. Mol Pharm 2022;19:4538-51.

56. Zhong Z, Liu C, Xu Y, et al. γ-Fe(2) O(3) loading mitoxantrone and glucose oxidase for pH-responsive chemo/chemodynamic/photothermal synergistic cancer therapy. Adv Healthc Mater 2022;11:e2102632.

57. Bai S, Zhang Y, Li D, Shi X, Lin G, Liu G. Gain an advantage from both sides: Smart size-shrinkable drug delivery nanosystems for high accumulation and deep penetration. Nano Today 2021;36:101038.

58. Gu Z, Dong Y, Xu S, Wang L, Liu Z. Molecularly imprinted polymer-based smart prodrug delivery system for specific targeting, prolonged retention, and tumor microenvironment-triggered release. Angew Chem Int Ed Engl 2021;60:2663-7.

59. Li HJ, Du JZ, Liu J, et al. Smart superstructures with ultrahigh ph-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano 2016;10:6753-61.

60. Wang Z, Wang Y, Sun X, et al. Supramolecular core-shell nanoassemblies with tumor microenvironment-triggered size and structure switch for improved photothermal therapy. Small 2022;18:e2200588.

61. Li J, Cheng Q, Yue L, et al. Macrophage-hitchhiking supramolecular aggregates of CuS nanoparticles for enhanced tumor deposition and photothermal therapy. Nanoscale Horiz 2021;6:907-12.

62. Ren Z, Sun S, Sun R, et al. A metal-polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy. Adv Mater 2020;32:e1906024.

63. Sun P, Deng Q, Kang L, Sun Y, Ren J, Qu X. A smart nanoparticle-laden and remote-controlled self-destructive macrophage for enhanced chemo/chemodynamic synergistic therapy. ACS Nano 2020;14:13894-904.

64. Ding Y, Wang C, Ma Y, et al. pH/ROS dual-responsive supramolecular polypeptide prodrug nanomedicine based on host-guest recognition for cancer therapy. Acta Biomater 2022;143:381-91.

65. Xue F, Wang Y, Zhang Q, et al. Self-assembly of affinity-controlled nanoparticles via host-guest interactions for drug delivery. Nanoscale 2018;10:12364-77.

66. Sun G, Zuo M, Xu Z, Wang K, Wang L, Hu XY. Orthogonal design of supramolecular prodrug vesicles via water-soluble pillar[5]arene and betulinic acid derivative for dual chemotherapy. ACS Appl Bio Mater 2022;5:3320-8.

67. Xu P, Feng Q, Yang X, et al. Near infrared light triggered cucurbit[7]uril-stabilized gold nanostars as a supramolecular nanoplatform for combination treatment of cancer. Bioconjug Chem 2018;29:2855-66.

68. Zhang Y, Yang D, Chen H, et al. Reduction-sensitive fluorescence enhanced polymeric prodrug nanoparticles for combinational photothermal-chemotherapy. Biomaterials 2018;163:14-24.

69. Wang H, Han RL, Yang LM, et al. Design and synthesis of core-shell-shell upconversion nanoparticles for NIR-induced drug release, photodynamic therapy, and cell imaging. ACS Appl Mater Interfaces 2016;8:4416-23.

70. Yang S, You Q, Yang L, et al. Rodlike MSN@Au nanohybrid-modified supermolecular photosensitizer for NIRF/MSOT/CT/MR quadmodal imaging-guided photothermal/photodynamic cancer therapy. ACS Appl Mater Interfaces 2019;11:6777-88.

71. Song N, Zhang Z, Liu P, et al. Pillar[5]arene-modified gold nanorods as nanocarriers for multi-modal imaging-guided synergistic photodynamic-photothermal therapy. Adv Funct Mater 2021;31:2009924.

72. Yue L, Yang K, Wei J, et al. Supramolecular vesicles based on gold nanorods for precise control of gene therapy and deferred photothermal therapy. CCS Chem 2022;4:1745-57.

73. Kong X, Chen Q, Wan G, et al. Hyaluronic acid-enwrapped polyoxometalate complex for synergistic near infrared-II photothermal/chemo-therapy and chemodynamic therapy. Biomacromolecules 2022;23:3752-65.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/