REFERENCES

1. Panfil YE, Oded M, Banin U. Colloidal quantum nanostructures: emerging materials for display applications. Angew Chem Int Ed Engl 2018;57:4274-95.

2. Saldanha PL, Lesnyak V, Manna L. Large scale syntheses of colloidal nanomaterials. Nano Today 2017;12:46-63.

3. Shim M, Guyot-Sionnest P. n-type colloidal semiconductor nanocrystals. Nature 2000;407:981-3.

4. Carulli F, Pinchetti V, Zaffalon ML, et al. Optical and magneto-optical properties of donor-bound excitons in vacancy-engineered colloidal nanocrystals. Nano Lett 2021;21:6211-9.

5. Hartley CL, Kessler ML, Dempsey JL. Molecular-level insight into semiconductor nanocrystal surfaces. J Am Chem Soc 2021;143:1251-66.

6. Roth AN, Chen Y, Adamson MAS, et al. Alkaline-earth chalcogenide nanocrystals: solution-phase synthesis, surface chemistry, and stability. ACS Nano 2022;16:12024-35.

7. Granados Del Águila A, Liu S, Do TTH, et al. Linearly polarized luminescence of atomically thin MoS2 semiconductor nanocrystals. ACS Nano 2019;13:13006-14.

8. Camats M, Pla D, Gómez M. Copper nanocatalysts applied in coupling reactions: a mechanistic insight. Nanoscale 2021;13:18817-38.

9. Pellei M, Del Bello F, Porchia M, Santini C. Zinc coordination complexes as anticancer agents. Coord Chem Rev 2021;445:214088.

10. Chábera P, Liu Y, Prakash O, et al. A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence. Nature 2017;543:695-9.

11. Hu Z, O'Neill R, Lesyuk R, Klinke C. Colloidal two-dimensional metal chalcogenides: realization and application of the structural anisotropy. Acc Chem Res 2021;54:3792-803.

12. Zhang J, Wang L, Chen F, Tang A, Teng F. Optical properties of multinary copper chalcogenide semiconductor nanocrystals and their applications in electroluminescent devices. Chin Sci Bull 2021;66:2162-78.

13. Kim JY, Yang J, Yu JH, et al. Highly efficient copper-indium-selenide quantum dot solar cells: suppression of carrier recombination by controlled ZnS overlayers. ACS Nano 2015;9:11286-95.

14. Yang W, Duan HS, Cha KC, et al. Molecular solution approach to synthesize electronic quality Cu2ZnSnS4 thin films. J Am Chem Soc 2013;135:6915-20.

15. Just J, Coughlan C, Singh S, et al. Insights into nucleation and growth of colloidal quaternary nanocrystals by multimodal X-ray analysis. ACS Nano 2021;15:6439-47.

16. Lee JM, Kraynak LA, Prieto AL. A directed route to colloidal nanoparticle synthesis of the copper selenophosphate Cu3PSe4. Angew Chem Int Ed Engl 2020;59:3038-42.

17. Mcclary SA, Balow RB, Agrawal R. Role of annealing atmosphere on the crystal structure and composition of tetrahedrite-tennantite alloy nanoparticles. J Mater Chem C 2018;6:10538-46.

18. Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW, Milliron DJ. Localized surface plasmon resonance in semiconductor nanocrystals. Chem Rev 2018;118:3121-207.

19. Wang J, Singh A, Liu P, et al. Colloidal synthesis of Cu2SnSe3 tetrapod nanocrystals. J Am Chem Soc 2013;135:7835-8.

20. Liu G, Qi S, Chen J, Lou Y, Zhao Y, Burda C. Cu-Sb-S ternary semiconductor nanoparticle plasmonics. Nano Lett 2021;21:2610-7.

21. Sun M, Fu X, Chen K, Wang H. Dual-plasmonic gold@copper sulfide core-shell nanoparticles: phase-selective synthesis and multimodal photothermal and photocatalytic behaviors. ACS Appl Mater Interfaces 2020;12:46146-61.

22. Liu Z, Zhong Y, Shafei I, et al. Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions. Nat Commun 2019;10:1394.

23. Ali MA, Yuehui X, Liu X, Qiu J. Self-confined precipitation of ultrasmall plasmonic Cu2-xSe particles in transparent solid medium. J Phys Chem C 2019;123:9394-9.

24. Liu Y, Liu M, Swihart MT. Plasmonic copper sulfide-based materials: a brief introduction to their synthesis, doping, alloying, and applications. J Phys Chem C 2017;121:13435-47.

25. Arumugam GM, Karunakaran SK, Galian RE, Pérez-Prieto J. Recent Progress in lanthanide-doped inorganic perovskite nanocrystals and nanoheterostructures: a future vision of bioimaging. Nanomaterials 2022;12:2130.

26. Yang R, Mei L, Zhang Q, et al. High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat Protoc 2022;17:358-77.

27. Sreejith S, Huong TTM, Borah P, Zhao Y. Organic–inorganic nanohybrids for fluorescence, photoacoustic and Raman bioimaging. Sci Bull 2015;60:665-78.

28. Ye K, Tang T, Liang Z, Ji H, Lin Z, Yang S. Recent progress of bismuth vanadate-based photoelectrocatalytic water splitting. Chin Sci Bull 2022;67:2115-25.

29. Ge H, Kuwahara Y, Yamashita H. Development of defective molybdenum oxides for photocatalysis, thermal catalysis, and photothermal catalysis. Chem Commun 2022;58:8466-79.

30. Chakraborty S, Mannar S, Viswanatha R. Local surface plasmon-assisted metal oxide perovskite heterostructure for small light emitters. J Phys Chem C 2021;125:10565-71.

31. Staller CM, Gibbs SL, Saez Cabezas CA, Milliron DJ. Quantitative analysis of extinction coefficients of Tin-doped indium oxide nanocrystal ensembles. Nano Lett 2019;19:8149-54.

32. Tandon B, Agrawal A, Heo S, Milliron DJ. Competition between depletion effects and coupling in the plasmon modulation of doped metal oxide nanocrystals. Nano Lett 2019;19:2012-9.

33. Zandi O, Agrawal A, Shearer AB, et al. Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals. Nat Mater 2018;17:710-7.

34. Zheng JW, Lebedev K, Wu SO, et al. High loading of transition metal single atoms on chalcogenide catalysts. J Am Chem Soc 2021;143:7979-90.10.1021/jacs.1c01097.

35. Li XP, Huang RJ, Chen C, Li T, Gao YJ. Simultaneous conduction and valence band regulation of indium-based quantum dots for efficient H2 photogeneration. Nanomaterials 2021;11:1115.

36. Liu X, Swihart MT. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chem Soc Rev 2014;43:3908-20.

37. Zimmer D, Ruiz-fuertes J, Morgenroth W, et al. Pressure-induced changes of the structure and properties of monoclinic α -chalcocite Cu2S. Phys Rev B 2018:97.

38. Barman SK, Huda MN. Stability enhancement of Cu2S against Cu vacancy formation by Ag alloying. J Phys Condens Matter 2018;30:165701.

39. Zimmer D, Ruiz-fuertes J, Bayarjargal L, et al. Phase transition of tetragonal copper sulfide Cu2S at low temperatures. Phys Rev B 2017:96.

40. Khatri P, Huda MN. Prediction of a new phase of CuxS near stoichiometric composition. Int J Photoenergy 2015;2015:1-7.

41. Saona LA, Campo-Giraldo JL, Anziani-Ostuni G, et al. Cysteine-mediated green synthesis of copper sulphide nanoparticles: biocompatibility studies and characterization as counter electrodes. Nanomaterials 2022;12:3194.

42. Wang J, Zhuo K, Gao J, Landman U, Chou M. Mechanism for anisotropic diffusion of liquid-like Cu atoms in hexagonal β-Cu2S. Phys Rev Materials 2021:5.

43. Muddassir Y, Tahir S, Ali A, et al. Morphology-dependent thermoelectric properties of mixed phases of copper sulfide (Cu2-xS) nanostructures synthesized by hydrothermal method. Appl Phys A 2021:127.

44. Iqbal S, Bahadur A, Anwer S, et al. Effect of temperature and reaction time on the morphology of l-cysteine surface capped chalcocite (Cu2S) snowflakes dendrites nanoleaves and photodegradation study of methyl orange dye under visible light. Colloids Surf A Physicochem Eng Asp 2020;601:124984.

45. Asadov YG, Aliyev YI, Dashdemirov AO, Jabarov SH, Naghiyev TG. High-temperature X-ray diffraction study of Ag2S-Cu2S system. Mod Phys Lett B 2020;34:2150018.

46. Maskaeva LN, Glukhova IA, Markov VF, Tulenin SS, Voronin VI. Nanostructured copper(I) sulfide films: Synthesis, composition, morphology, and structure. Russ J Appl Chem 2016;89:1939-47.

47. Yarur Villanueva F, Green PB, Qiu C, et al. Binary Cu2-xS templates direct the formation of quaternary Cu2ZnSnS4 (Kesterite, Wurtzite) Nanocrystals. ACS Nano 2021;15:18085-99.

48. Zhu D, Ye H, Liu Z, et al. Seed-mediated growth of heterostructured Cu1.94S-MS (M = Zn, Cd, Mn) and alloyed CuNS2 (N = In, Ga) nanocrystals for use in structure- and composition-dependent photocatalytic hydrogen evolution. Nanoscale 2020;12:6111-20.

49. Liu W, Shi X, Gao H, et al. Kinetic condition driven phase and vacancy enhancing thermoelectric performance of low-cost and eco-friendly Cu2−xS. J Mater Chem C 2019;7:5366-73.

50. Chen L, Hu H, Chen R, Li Y, Li G. One-pot synthesis of roxbyite Cu1.81S triangular nanoplates relevant to plasmonic sensor. Mater Today Commun 2019;18:136-9.

51. Yamamoto K, Kashida S. X-ray study of the cation distribution in Cu2Se, Cu1.8Se and Cu1.8S; analysis by the maximum entropy method. Solid State Ion 1991;48:241-8.

52. Villa A, Telkhozhayeva M, Marangi F, et al. Optical Properties and Ultrafast Near-Infrared Localized Surface Plasmon Dynamics in Naturally p-Type Digenite Films. Adv Opt Mater 2023;11:2201488.

53. Zhang Y, Feng J, Ge Z. Enhanced thermoelectric performance of Cu1.8S via lattice softening. J Chem Eng 2022;428:131153.

54. Zhang Y, Xing C, Liu Y, et al. Doping-mediated stabilization of copper vacancies to promote thermoelectric properties of Cu2-xS. Nano Energy 2021;85:105991.

55. Kuterbekov K, Balapanov M, Kubenova M, et al. Thermal properties of nanocrystalline copper sulfides KxCu1.85S (0 < x < 0.05). Lett Mater 2022;12:191-6.

56. Janickis V, Petrasauskiene N. Modification of polyamide films by semiconductive and conductive copper selenide-copper sulfide layers. Available from: http://mokslozurnalai.lmaleidykla.lt/publ/0235-7216/2017/4/214%E2%80%93225pdf.pdf. [Last accessed on 11 May 2023].

57. Li Cheng, Li D, Yu W, et al. A novel strategy to fabricate CuS, Cu7.2S4, and Cu2-xSe nanofibers via inheriting the morphology of electrospun CuO nanofibers. Russ J Phys Chem 2019;93:730-5.

58. Tarachand, Hussain S, Lalla NP, et al. Thermoelectric properties of Ag-doped CuS nanocomposites synthesized by a facile polyol method. Phys Chem Chem Phys 2018;20:5926-35.

59. Yao J, Deng B, Ellis DE, Ibers JA. Syntheses, structures, physical properties, and electronic structures of KLn2CuS4 (Ln = Y, Nd, Sm, Tb, Ho) and K2Ln4Cu4S9 (Ln=Dy, Ho). J Solid State Chem 2003;176:5-12.

60. Roo J. Chemical Considerations for Colloidal Nanocrystal Synthesis. Chem Mater 2022;34:5766-79.

61. Rachkov AG, Schimpf AM. Colloidal Synthesis of Tunable Copper Phosphide Nanocrystals. Chem Mater 2021;33:1394-406.

62. Doan-Nguyen TP, Jiang S, Koynov K, Landfester K, Crespy D. Ultrasmall Nanocapsules Obtained by Controlling Ostwald Ripening. Angew Chem Int Ed Engl 2021;60:18094-102.

63. Wu J, Zhang Z, Fang Y, et al. Plasmon-enhanced photocatalytic cumulative effect on 2D semiconductor heterojunctions towards highly-efficient visible-light-driven solar-to-fuels conversion. J Chem Eng 2022;437:135308.

64. Wang W, Fang J, Huang X. Different behaviors between interband and intraband transitions generated hot carriers on g-C3N4/Au for photocatalytic H2 production. Appl Sur Sci 2020;513:145830.

65. Nishi H, Tatsuma T. Electrochemical and Photoelectrochemical Applications of Plasmonic Metal and Compound Nanoparticles. Electrochemistry 2019;87:321-7.

66. Yan C, Tian Q, Yang S. Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells. RSC Adv 2017;7:37887-97.

67. Kriegel I, Jiang C, Rodríguez-Fernández J, et al. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. J Am Chem Soc 2012;134:1583-90.

68. Chen L, Sakamoto M, Haruta M, et al. Tin Ion Directed Morphology Evolution of Copper Sulfide Nanoparticles and Tuning of Their Plasmonic Properties via Phase Conversion. Langmuir 2016;32:7582-7.

69. Bekenstein Y, Vinokurov K, Keren-Zur S, et al. Thermal doping by vacancy formation in copper sulfide nanocrystal arrays. Nano Lett 2014;14:1349-53.

70. Ou W, Zou Y, Wang K, et al. Active manipulation of NIR plasmonics: the case of Cu2-xSe through electrochemistry. J Phys Chem Lett 2018;9:274-80.

71. Schimpf AM, Knowles KE, Carroll GM, Gamelin DR. Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals. Acc Chem Res 2015;48:1929-37.

72. Jain PK, Manthiram K, Engel JH, White SL, Faucheaux JA, Alivisatos AP. Doped nanocrystals as plasmonic probes of redox chemistry. Angew Chem Int Ed Engl 2013;52:13671-5.

73. Alam R, Labine M, Karwacki CJ, Kamat PV. Modulation of Cu2-xS nanocrystal plasmon resonance through reversible photoinduced electron transfer. ACS Nano 2016;10:2880-6.

74. Liu K, Liu K, Liu J, et al. Copper chalcogenide materials as photothermal agents for cancer treatment. Nanoscale 2020;12:2902-13.

75. Li J, Zhang Y, Zhang J, et al. Chemical vapor deposition of quaternary 2D BiCuSeO p-type semiconductor with intrinsic degeneracy. Adv Mater 2022;34:e2207796.

76. Wang Y, Zhang A, Shao Z, et al. High-performance se-based photoelectrochemical photodetectors via in situ grown microrod arrays. Adv Opt Mater 2022;10:2201926.

77. Prominski A, Shi J, Li P, et al. Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues. Nat Mater 2022;21:647-55.

78. Zhu D, Tang A, Peng L, Liu Z, Yang C, Teng F. Tuning the plasmonic resonance of Cu2-xS nanocrystals: effects of the crystal phase, morphology and surface ligands. J Mater Chem C 2016;4:4880-8.

79. Liu Y, Liu M, Swihart MT. Reversible crystal phase interconversion between covellite cus and high chalcocite Cu2S nanocrystals. Chem Mater 2017;29:4783-91.

80. Li W, Zamani R, Rivera Gil P, et al. CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J Am Chem Soc 2013;135:7098-101.

81. De Trizio L, Li H, Casu A, et al. Sn cation valency dependence in cation exchange reactions involving Cu2-xSe nanocrystals. J Am Chem Soc 2014;136:16277-84.

82. Dorfs D, Härtling T, Miszta K, et al. Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals. J Am Chem Soc 2011;133:11175-80.

83. Chen L, Sakamoto M, Sato R, Teranishi T. Determination of a localized surface plasmon resonance mode of Cu7S4 nanodisks by plasmon coupling. Faraday Discuss 2015;181:355-64.

84. Ji M, Xu M, Zhang W, et al. Structurally well-defined Au@Cu2-xS core-shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency. Adv Mater 2016;28:3094-101.

85. Zhu D, Liu M, Liu X, Liu Y, Prasad PN, Swihart MT. Au-Cu2-xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy. J Mater Chem B 2017;5:4934-42.

86. Ma L, Liang S, Liu X, Yang D, Zhou L, Wang Q. Synthesis of dumbbell-like gold-metal sulfide core-shell nanorods with largely enhanced transverse plasmon resonance in visible region and efficiently improved photocatalytic activity. Adv Funct Mater 2015;25:898-904.

87. Liu X, Lee C, Law WC, et al. Au-Cu2-xSe heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging. Nano Lett 2013;13:4333-9.

88. Liu JN, Bu W, Shi J. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem Rev 2017;117:6160-224.

89. Liu Y, Ai K, Liu J, Deng M, He Y, Lu L. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater 2013;25:1353-9.

90. Tian Q, Tang M, Sun Y, et al. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv Mater 2011;23:3542-7.

91. Kriegel I, Scotognella F, Manna L. Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives. Phys Rep 2017;674:1-52.

92. Fenton JL, Schaak RE. Structure-selective cation exchange in the synthesis of zincblende MnS and CoS nanocrystals. Angew Chem Int Ed Engl 2017;56:6464-7.

93. Coughlan C, Ibáñez M, Dobrozhan O, Singh A, Cabot A, Ryan KM. Compound copper chalcogenide nanocrystals. Chem Rev 2017;117:5865-6109.

94. Balendhran S, Hussain Z, Shrestha VR, et al. Copper tetracyanoquinodimethane (CuTCNQ): a metal-organic semiconductor for room-temperature visible to long-wave infrared photodetection. ACS Appl Mater Interfaces 2021;13:38544-52.

95. Muhammad Z, Mu K, Lv H, et al. Electron doping induced semiconductor to metal transitions in ZrSe2 layers via copper atomic intercalation. Nano Res 2018;11:4914-22.

96. Gan Z, Zhou P, Dong A, Zheng D, Wang H. A laser and electric pulse modulated nonvolatile photoelectric response in nanoscale copper dusted metal-oxide-semiconductor structures. Adv Electron Mater 2018;4:1800234.

97. Muhammed MA, Döblinger M, Rodríguez-Fernández J. Switching plasmons: gold nanorod-copper chalcogenide core-shell nanoparticle clusters with selectable metal/semiconductor NIR plasmon resonances. J Am Chem Soc 2015;137:11666-77.

98. Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 2011;10:911-21.

99. Ma RM, Oulton RF, Sorger VJ, Bartal G, Zhang X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat Mater 2011;10:110-3.

100. Alavirad M, Roy L, Berini P. Surface plasmon enhanced photodetectors based on internal photoemission. J Photon Energy 2016;6:042511.

101. Fang Y, Jiao Y, Xiong K, et al. Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO2 nanostructures. Nano Lett 2015;15:4059-65.

102. Smith JG, Faucheaux JA, Jain PK. Plasmon resonances for solar energy harvesting: a mechanistic outlook. Nano Today 2015;10:67-80.

103. Zhou D, Li D, Zhou X, et al. Semiconductor plasmon induced up-conversion enhancement in mCu2-xS@SiO2@Y2O3:Yb3+/Er3+ core-shell nanocomposites. ACS Appl Mater Interfaces 2017;9:35226-33.

104. Cui J, Xu S, Guo C, Jiang R, James TD, Wang L. Highly efficient photothermal semiconductor nanocomposites for photothermal imaging of latent fingerprints. Anal Chem 2015;87:11592-8.

105. Cui J, Jiang R, Guo C, Bai X, Xu S, Wang L. Fluorine grafted Cu7S4-Au heterodimers for multimodal imaging guided photothermal therapy with high penetration depth. J Am Chem Soc 2018;140:5890-4.

106. Wang Y, Wang W, Sang D, Yu K, Lin H, Qu F. Cu2-xSe/Bi2Se3@PEG Z-scheme heterostructure: a multimode bioimaging guided theranostic agent with enhanced photo/chemodynamic and photothermal therapy. Biomater Sci 2021;9:4473-83.

107. Shi H, Yan R, Wu L, et al. Tumor-targeting CuS nanoparticles for multimodal imaging and guided photothermal therapy of lymph node metastasis. Acta Biomater 2018;72:256-65.

108. Yuan Y, Raj P, Zhang J, Siddhanta S, Barman I, Bulte JWM. Furin-mediated self-assembly of olsalazine nanoparticles for targeted raman imaging of tumors. Angew Chem Int Ed Engl 2021;60:3923-7.

109. Lee S, Pham TC, Bae C, Choi Y, Kim YK, Yoon J. Nano theranostics platforms that utilize proteins. Coord Chem Rev 2020;412:213258.

110. Cai H, Dai X, Wang X, et al. A nanostrategy for efficient imaging-guided antitumor therapy through a stimuli-responsive branched polymeric prodrug. Adv Sci 2020;7:1903243.

111. Staal AHJ, Becker K, Tagit O, et al. In vivo clearance of 19F MRI imaging nanocarriers is strongly influenced by nanoparticle ultrastructure. Biomaterials 2020;261:120307.

112. Su H, Kwok KW, Cleary K, et al. State of the art and future opportunities in MRI-guided robot-assisted surgery and interventions. Proc IEEE Inst Electr Electron Eng 2022;110:968-92.

113. Xu J, Zhang Y, Liu Y, et al. Vitality-enhanced dual-modal tracking system reveals the dynamic fate of mesenchymal stem cells for stroke therapy. Small 2022;18:e2203431.

114. Wang H, Wang Y, Lu L, et al. Reducing valence states of Co Active Sites in a Single-Atom Nanozyme for Boosted Tumor Therapy. Adv Funct Materials 2022;32:2200331.

115. Pipal RW, Stout KT, Musacchio PZ, et al. Metallaphotoredox aryl and alkyl radiomethylation for PET ligand discovery. Nature 2021;589:542-7.

116. Chen Y, Zhao B, Zhang H, Zhang T, Yang D, Qiu F. Laminated PET-based membranes with sweat transportation and dual thermal insulation properties. J Chem Eng 2022;450:138177.

117. Zhou YP, Sun Y, Takahashi K, et al. Development of a PET radioligand for α2δ-1 subunit of calcium channels for imaging neuropathic pain. Eur J Med Chem 2022;242:114688.

118. Wu W, Pu Y, Shi J. Dual Size/charge-switchable nanocatalytic medicine for deep tumor therapy. Adv Sci 2021;8:2002816.

119. Guo W, Sun X, Jacobson O, et al. Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence. ACS Nano 2015;9:488-95.

120. Zhou M, Zhang R, Huang M, et al. A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J Am Chem Soc 2010;132:15351-8.

121. Quintana C, Cifuentes MP, Humphrey MG. Transition metal complex/gold nanoparticle hybrid materials. Chem Soc Rev 2020;49:2316-41.

122. Shin TH, Choi Y, Kim S, Cheon J. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev 2015;44:4501-16.

123. Chen Y, Liu X, Wu R, Cui J, Hu G, Wang L. Dual active center-assembled Cu31S16-Co9-xNixS8 heterodimers: coherent interface engineering induces multihole accumulation for light-enhanced electrocatalytic oxygen evolution. ACS Appl Mater Interfaces 2021;13:20094-104.

124. Xu J, Cui J, Guo C, et al. Ultrasmall Cu7S4 @MoS2 Hetero-nanoframes with abundant active edge sites for ultrahigh-performance hydrogen evolution. Angew Chem Int Ed Engl 2016;55:6502-5.

125. Zhu H, Zhou Y, Wang Y, Xu S, James TD, Wang L. Stepwise-enhanced tumor targeting of near-infrared emissive Au Nanoclusters with high quantum yields and long-term stability. Anal Chem 2022;94:13189-96.

126. Shi H, Sun Y, Yan R, et al. Magnetic semiconductor Gd-doping CuS nanoparticles as activatable nanoprobes for bimodal imaging and targeted photothermal therapy of gastric tumors. Nano Lett 2019;19:937-47.

127. Han Y, Wang T, Liu H, et al. The release and detection of copper ions from ultrasmall theranostic Cu2-xSe nanoparticles. Nanoscale 2019;11:11819-29.

128. Zhang Y, Fang J, Ye S, et al. A hydrogen sulphide-responsive and depleting nanoplatform for cancer photodynamic therapy. Nat Commun 2022;13:1685.

129. Cui C, Li J, Fang J, et al. Building multipurpose nano-toolkit by rationally decorating NIR-II fluorophore to meet the needs of tumor diagnosis and treatment. Chin Chem Lett 2022;33:3478-83.

130. Zhao M, Ding J, Mao Q, et al. A novel αvβ3 integrin-targeted NIR-II nanoprobe for multimodal imaging-guided photothermal therapy of tumors in vivo. Nanoscale 2020;12:6953-8.

131. Yun B, Zhu H, Yuan J, Sun Q, Li Z. Synthesis, modification and bioapplications of nanoscale copper chalcogenides. J Mater Chem B 2020;8:4778-812.

132. Sarma A, Gutowski O, Seeck O, et al. Photothermal synthesis of copper sulfide nanowires for direct lithography of chalcogenides on a chip. ACS Appl Nano Mater 2022;5:4367-75.

133. Li Y, Lu W, Huang Q, Huang M, Li C, Chen W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 2010;5:1161-71.

134. Zhou M, Li J, Liang S, Sood AK, Liang D, Li C. CuS nanodots with ultrahigh efficient renal clearance for positron emission tomography imaging and image-guided photothermal therapy. ACS Nano 2015;9:7085-96.

135. Zhang S, Sun C, Zeng J, et al. Ambient aqueous synthesis of ultrasmall PEGylated Cu2-xSe nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer. Adv Mater 2016;28:8927-36.

136. Bao J, Wang Y, Li C, et al. Gold-promoting-satellite to boost photothermal conversion efficiency of Cu2-xSe for triple-negative breast cancer targeting therapy. Materials Today Nano 2022;18:100211.

137. Chen H, Song M, Tang J, et al. Ultrahigh 19F loaded Cu1.75S nanoprobes for simultaneous (19)F magnetic resonance imaging and photothermal therapy. ACS Nano 2016;10:1355-62.

138. Guo C, Yan Y, Xu S, Wang L. In situ fabrication of nanoprobes for 19F magnetic resonance and photoacoustic imaging-guided tumor therapy. Anal Chem 2022;94:5317-24.

139. Huang X, Zhang W, Guan G, Song G, Zou R, Hu J. Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics. Acc Chem Res 2017;50:2529-38.

140. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics for the US Hispanic/Latino population, 2021. CA Cancer J Clin 2021;71:7-33.

141. Cho NH, Cheong TC, Min JH, et al. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol 2011;6:675-82.

142. Li J, Ge Z, Toh K, et al. Enzymatically transformable polymersome-based nanotherapeutics to eliminate minimal relapsable cancer. Adv Mater 2021;33:e2105254.

143. Izci M, Maksoudian C, Manshian BB, Soenen SJ. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem Rev 2021;121:1746-803.

144. Ding J, Mao Q, Zhao M, et al. Protein sulfenic acid-mediated anchoring of gold nanoparticles for enhanced CT imaging and radiotherapy of tumors in vivo. Nanoscale 2020;12:22963-9.

145. Mao Q, Fang J, Wang A, et al. Aggregation of gold nanoparticles triggered by hydrogen peroxide-initiated chemiluminescence for activated tumor theranostics. Angew Chem Int Ed Engl 2021;60:23805-11.

146. Fang J, Zhao Y, Wang A, et al. In vivo quantitative assessment of a radiation dose based on ratiometric photoacoustic imaging of tumor apoptosis. Anal Chem 2022;94:5149-58.

147. Ye S, Cui C, Cheng X, et al. Red light-initiated cross-linking of NIR probes to cytoplasmic RNA: an innovative strategy for prolonged imaging and unexpected tumor suppression. J Am Chem Soc 2020;142:21502-12.

148. Cui J, Jiang R, Lu W, Xu S, Wang L. Plasmon-enhanced photoelectrical hydrogen evolution on monolayer MoS2 decorated Cu1.75S-Au nanocrystals. Small 2017;13:1602235.

149. Cheng Y, Chen Q, Guo Z, et al. An Intelligent biomimetic nanoplatform for holistic treatment of metastatic triple-negative breast cancer via photothermal ablation and immune remodeling. ACS Nano 2020;14:15161-81.

150. Song G, Wang Q, Wang Y, et al. A low-toxic multifunctional nanoplatform based on Cu9S5@mSiO2 core-shell nanocomposites: combining photothermal- and chemotherapies with infrared thermal imaging for cancer treatment. Adv Funct Mater 2013;23:4281-92.

151. Zhou M, Chen Y, Adachi M, et al. Single agent nanoparticle for radiotherapy and radio-photothermal therapy in anaplastic thyroid cancer. Biomaterials 2015;57:41-9.

152. Lin LS, Huang T, Song J, et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J Am Chem Soc 2019;141:9937-45.

153. Wang R, He Z, Cai P, et al. Surface-functionalized modified copper sulfide nanoparticles enhance checkpoint blockade tumor immunotherapy by photothermal therapy and antigen capturing. ACS Appl Mater Interfaces 2019;11:13964-72.

154. Shen S, Gao Y, Ouyang Z, Jia B, Shen M, Shi X. Photothermal-triggered dendrimer nanovaccines boost systemic antitumor immunity. J Control Release 2023;355:171-83.

155. Wang W, Ma E, Tao P, et al. Chemical-NIR dual-powered CuS/Pt nanomotors for tumor hypoxia modulation, deep tumor penetration and augmented synergistic phototherapy. J Mater Sci Technol 2023;148:171-85.

156. Chen Y, Liu P, Zhou C, et al. Gold nanobipyramid@copper sulfide nanotheranostics for image-guided NIR-II photo/chemodynamic cancer therapy with enhanced immune response. Acta Biomater 2023;158:649-59.

157. Gao F, Jiang L, Zhang J, et al. Near-infrared light-responsive nanosystem with prolonged circulation and enhanced penetration for increased photothermal and photodynamic therapy. ACS Materials Lett 2023;5:1-10.

158. Liang J, Niu M, Luo G, et al. Tailor-made biotuner against colorectal tumor microenvironment to transfer harms into treasures for synergistic oncotherapy. Nano Today 2022;47:101662.

159. Yang G, Li M, Song T, et al. Polydopamine-engineered theranostic nanoscouts enabling intracellular HSP90 mRNAs Fluorescence detection for imaging-guided chemo-photothermal therapy. Adv Healthc Mater 2022;11:e2201615.

160. Xin Y, Guo Z, Ma A, et al. A robust ROS generation nanoplatform combating periodontitis via sonodynamic/chemodynamic combination therapy. J Chem Eng 2023;451:138782.

161. Zhang H, Han R, Song P, et al. Hydrogen peroxide self-sufficient and glutathione-depleted nanoplatform for boosting chemodynamic therapy synergetic phototherapy. J Colloid Interface Sci 2023;629:103-13.

162. Shi Z, Tang J, Lin C, et al. Construction of iron-mineralized black phosphorene nanosheet to combinate chemodynamic therapy and photothermal therapy. Drug Deliv 2022;29:624-36.

163. Chen ZA, Li ZH, Li CJ, et al. Manganese-containing polydopamine nanoparticles as theranostic agents for magnetic resonance imaging and photothermal/chemodynamic combined ferroptosis therapy treating gastric cancer. Drug Deliv ;29:1201-1211.

164. Shi L, Wang Y, Zhang C, et al. An acidity-unlocked magnetic nanoplatform enables self-boosting ROS generation through upregulation of lactate for imaging-guided highly specific chemodynamic therapy. Angew Chem Int Ed Engl 2021;60:9562-72.

165. Liu C, Cao Y, Cheng Y, et al. An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nat Commun 2020;11:1735.

166. Deng L, Liu M, Sheng D, et al. Low-intensity focused ultrasound-augmented Cascade chemodynamic therapy via boosting ROS generation. Biomaterials 2021;271:120710.

167. Shen J, Yu H, Shu Y, Ma M, Chen H. A robust ros generation strategy for enhanced chemodynamic/photodynamic therapy via H2O2/O2 self-supply and Ca2+ overloading. Adv Funct Mater 2021;31:2106106.

168. Song M, Cheng Y, Tian Y, et al. Sonoactivated chemodynamic therapy: a robust ros generation nanotheranostic eradicates multidrug-resistant bacterial infection. Adv Funct Mater 2020;30:2003587.

169. Huang C, Wang Y, Wang Y, et al. Ultraweak chemiluminescence enhanced on the surface of lanthanide metal–organic framework nanosheets synthesized by ultrasonic wave. Appl Surf Sci 2022;579:151860.

170. Cao Z, Zhang L, Liang K, et al. Biodegradable 2D Fe-Al hydroxide for nanocatalytic tumor-dynamic therapy with tumor specificity. Adv Sci 2018;5:1801155.

171. Li M, Xia J, Tian R, et al. Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors. J Am Chem Soc 2018;140:14851-9.

172. Wang Z, Zhang Y, Ju E, et al. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat Commun 2018;9:3334.

173. Wu W, Yu L, Jiang Q, et al. Enhanced tumor-specific disulfiram chemotherapy by in situ Cu2+ chelation-initiated nontoxicity-to-toxicity transition. J Am Chem Soc 2019;141:11531-9.

174. Zuo W, Liu N, Chang Z, et al. Single-site bimetallic nanosheet for imaging guided mutually-reinforced photothermal-chemodynamic therapy. J Chem Eng 2022;442:136125.

175. Wang S, Pang Y, Hu S, Lv J, Lin Y, Li M. Copper sulfide engineered covalent organic frameworks for pH-responsive chemo/photothermal/chemodynamic synergistic therapy against cancer. J Chem Eng 2023;451:138864.

176. Bharathiraja S, Manivasagan P, Moorthy MS, Bui NQ, Lee KD, Oh J. Chlorin e6 conjugated copper sulfide nanoparticles for photodynamic combined photothermal therapy. Photodiagnosis Photodyn Ther 2017;19:128-34.

177. Nikam AN, Pandey A, Fernandes G, et al. Copper sulphide based heterogeneous nanoplatforms for multimodal therapy and imaging of cancer: Recent advances and toxicological perspectives. Coord Chem Rev 2020;419:213356.

178. Han L, Zhang Y, Chen XW, Shu Y, Wang JH. Protein-modified hollow copper sulfide nanoparticles carrying indocyanine green for photothermal and photodynamic therapy. J Mater Chem B 2016;4:105-12.

179. Liu W, Xiang H, Tan M, et al. Nanomedicine enables drug-potency activation with tumor sensitivity and hyperthermia synergy in the second near-infrared biowindow. ACS Nano 2021;15:6457-70.

180. Chen L, Zhou L, Wang C, et al. Tumor-targeted drug and CpG delivery system for phototherapy and docetaxel-enhanced immunotherapy with polarization toward M1-type macrophages on triple negative breast cancers. Adv Mater 2019;31:e1904997.

181. Ricciardi V, Portaccio M, Lasalvia M, et al. Evaluation of proton-induced biomolecular changes in MCF-10A breast cells by means of FT-IR microspectroscopy. Appl Sci 2022;12:5074.

182. Qi J, Geng C, Tang X, et al. Effect of spatial distribution of boron and oxygen concentration on DNA damage induced from boron neutron capture therapy using Monte Carlo simulations. Int J Radiat Biol 2021;97:986-96.

183. Ganjeh Z, Eslami-kalantari M, Ebrahimi Loushab M, Mowlavi AA. Calculation of direct DNA damages by a new approach for carbon ions and protons using Geant4-DNA. Radiat Phys and Chem 2021;179:109249.

184. Zhao Y, Chen BQ, Kankala RK, Wang SB, Chen AZ. Recent advances in combination of copper chalcogenide-based photothermal and reactive oxygen species-related therapies. ACS Biomater Sci Eng 2020;6:4799-815.

185. Zhou X, Liu H, Zheng Y, et al. Overcoming radioresistance in tumor therapy by alleviating hypoxia and using the HIF-1 inhibitor. ACS Appl Mater Interfaces 2020;12:4231-40.

186. Peng C, Liang Y, Chen Y, et al. Hollow mesoporous tantalum oxide based nanospheres for triple sensitization of radiotherapy. ACS Appl Mater Interfaces 2020;12:5520-30.

187. Jiang W, Han X, Zhang T, Xie D, Zhang H, Hu Y. An oxygen self-evolving, multistage delivery system for deeply located hypoxic tumor treatment. Adv Healthc Mater 2020;9:e1901303.

188. Yan T, Yang K, Chen C, et al. Synergistic photothermal cancer immunotherapy by Cas9 ribonucleoprotein-based copper sulfide nanotherapeutic platform targeting PTPN2. Biomaterials 2021;279:121233.

189. Li N, Sun Q, Yu Z, et al. Nuclear-targeted photothermal therapy prevents cancer recurrence with near-infrared triggered copper sulfide nanoparticles. ACS Nano 2018;12:5197-206.

190. Jiang Y, Huo Z, Qi X, Zuo T, Wu Z. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes. Nanomedicine 2022;17:303-24.

191. Kahlson MA, Dixon SJ. Copper-induced cell death. Science 2022;375:1231-2.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/