REFERENCES

1. Quasdorf KW, Overman LE. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature 2014;516:181-91.

2. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002;45:2615-23.

3. Hazra A, Bharitkar YP, Chakraborty D, et al. Regio- and stereoselective synthesis of a library of bioactive dispiro-oxindolo/acenaphthoquino andrographolides via 1,3-dipolar cycloaddition reaction under microwave irradiation. ACS Comb Sci 2013;15:41-8.

4. Hu R, Huang JL, Yuan FY, et al. Crotonianoids A-C, Three unusual tigliane diterpenoids from the seeds of croton tiglium and their anti-prostate cancer activity. J Org Chem 2022;87:9301-6.

5. Liu J, Flegel J, Otte F, et al. Combination of pseudo-natural product design and formal natural product ring distortion yields stereochemically and biologically diverse pseudo-sesquiterpenoid alkaloids. Angew Chem Int Ed Engl 2021;60:21384-95.

6. Alemán J, Cabrera S. Applications of asymmetric organocatalysis in medicinal chemistry. Chem Soc Rev 2013;42:774-93.

7. Zong L, Tan CH. Phase-transfer and ion-pairing catalysis of pentanidiums and bisguanidiniums. Acc Chem Res 2017;50:842-56.

8. Metrano AJ, Miller SJ. Peptide-based catalysts reach the outer sphere through remote desymmetrization and atroposelectivity. Acc Chem Res 2019;52:199-215.

9. Zhang YC, Jiang F, Shi F. Organocatalytic asymmetric synthesis of indole-based chiral heterocycles: strategies, reactions, and outreach. Acc Chem Res 2020;53:425-46.

10. Ramachary DB, Jain S. Sequential one-pot combination of multi-component and multi-catalysis cascade reactions: an emerging technology in organic synthesis. Org Biomol Chem 2011;9:1277-300.

11. Houk KN, List B. Asymmetric organocatalysis. Acc Chem Res 2004;37:487-487.

12. MacMillan DW. The advent and development of organocatalysis. Nature 2008;455:304-8.

13. Dondoni A, Massi A. Asymmetric organocatalysis: from infancy to adolescence. Angew Chem Int Ed Engl 2008;47:4638-60.

14. Zhang HH, Shi F. Organocatalytic atroposelective synthesis of indole derivatives bearing axial chirality: strategies and applications. Acc Chem Res 2022;55:2562-80.

15. Volla CM, Atodiresei I, Rueping M. Catalytic C-C bond-forming multi-component cascade or domino reactions: pushing the boundaries of complexity in asymmetric organocatalysis. Chem Rev 2014;114:2390-431.

16. Nielsen TE, Schreiber SL. Towards the optimal screening collection: a synthesis strategy. Angew Chem Int Ed Engl 2008;47:48-56.

17. Li JW, Vederas JC. Drug discovery and natural products: end of an era or an endless frontier? Science 2009;325:161-5.

18. Kumar K, Waldmann H. Synthesis of natural product inspired compound collections. Angew Chem Int Ed Engl 2009;48:3224-42.

19. Koch MA, Schuffenhauer A, Scheck M, et al. Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci USA 2005;102:17272-7.

20. Sharma I, Tan DS. Drug discovery: diversifying complexity. Nat Chem 2013;5:157-8.

21. Piacente S, Montoro P, Oleszek W, Pizza C. Yucca schidigera bark: phenolic constituents and antioxidant activity. J Nat Prod 2004;67:882-5.

22. Wada S, Hitomi T, Tanaka R. Phenolic compounds Isolated from the bark of Abies sachalinensis. HCA 2009;92:1610-20.

23. Wada S, Hitomi T, Tokuda H, Tanaka R. Anti-tumor-initiating effects of spiro-biflavonoids from Abies sachalinensis. Chem Biodivers 2010;7:2303-8.

24. Vedejs E, Daugulis O, Diver ST. Enantioselective acylations catalyzed by chiral phosphines. J Org Chem 1996;61:430-1.

25. Zhu G, Chen Z, Jiang Q, Xiao D, Cao P, Zhang X. Asymmetric [3 + 2] cycloaddition of 2,3-butadienoates with electron-deficient olefins catalyzed by novel chiral 2,5-dialkyl-7-phenyl-7- phosphabicyclo[2.2.1]heptanes. J Am Chem Soc 1997;119:3836-7.

26. Chen Z, Zhu G, Jiang Q, Xiao D, Cao P, Zhang X. Asymmetric formation of quaternary carbon centers catalyzed by novel chiral 2,5-dialkyl-7-phenyl-7-phosphabicyclo[2.2.1]heptanes. J Org Chem 1998;63:5631-5.

27. Vedejs E, Daugulis O. 2-aryl-4,4,8-trimethyl-2-phosphabicyclo[3.3.0]octanes:  reactive chiral phosphine catalysts for enantioselective acylation. J Am Chem Soc 1999;121:5813-4.

28. Shaw SA, Aleman P, Vedejs E. Development of chiral nucleophilic pyridine catalysts: applications in asymmetric quaternary carbon synthesis. J Am Chem Soc 2003;125:13368-9.

29. Shi M, Chen LH, Li CQ. Chiral phosphine lewis bases catalyzed asymmetric aza-Baylis-Hillman reaction of N-sulfonated imines with activated olefins. J Am Chem Soc 2005;127:3790-800.

30. Wurz RP, Fu GC. Catalytic asymmetric synthesis of piperidine derivatives through the [4 + 2] annulation of imines with allenes. J Am Chem Soc 2005;127:12234-5.

31. Marinetti A, Voituriez A. Enantioselective phosphine organocatalysis. Synlett 2010;2010:174-94.

32. Albertshofer K, Tan B, Barbas CF 3rd. Asymmetric construction of spirocyclopentenebenzofuranone core structures via highly selective phosphine-catalyzed [3 + 2] cycloaddition reactions. Org Lett 2013;15:2958-61.

33. Wang D, Wang GP, Sun YL, et al. Chiral phosphine-catalyzed tunable cycloaddition reactions of allenoates with benzofuranone-derived olefins for a highly regio-, diastereo- and enantioselective synthesis of spiro-benzofuranones. Chem Sci 2015;6:7319-25.

34. Ren L, Lei T, Ye J, Gong L. Corrigendum: step-economical synthesis of tetrahydroquinolines by asymmetric relay catalytic friedlander condensation/transfer hydrogenation. Angew Chem Int Ed 2014;53:6027-6027.

35. Sahani RL, Liu RS. Gold-catalyzed [4 + 2] annulation/cyclization cascades of benzisoxazoles with propiolate derivatives to access highly oxygenated tetrahydroquinolines. Angew Chem Int Ed Engl 2017;56:12736-40.

36. Xie M, Chen X, Zhu Y, et al. Asymmetric three-component inverse electron-demand aza-diels-alder reaction: efficient synthesis of ring-fused tetrahydroquinolines. Angew Chem Int Ed Engl 2010;49:3799-802.

37. Zhang JL, Ma R, Zhao HH, Xu PF. Enantioselective construction of spiro-tetrahydroquinoline scaffolds through asymmetric catalytic cascade reactions. Chem Commun (Camb) 2022;58:3493-6.

38. Masters KS, Bräse S. Xanthones from fungi, lichens, and bacteria: the natural products and their synthesis. Chem Rev 2012;112:3717-76.

39. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D. Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 2011;28:1208-28.

40. Shim SH, Baltrusaitis J, Gloer JB, Wicklow DT. Phomalevones A-C: dimeric and pseudodimeric polyketides from a fungicolous Hawaiian isolate of Phoma sp. (Cucurbitariaceae). J Nat Prod 2011;74:395-401.

41. Goel R, Sharma V, Budhiraja A, Ishar MP. Synthesis and evaluation of novel 3a,9a-dihydro-1-ethoxycarbonyl-1-cyclopenteno[5,4-b]benzopyran-4-ones as antifungal agents. Bioorg Med Chem Lett 2012;22:4665-7.

42. Zhang F, Li L, Niu S, et al. A thiopyranchromenone and other chromone derivatives from an Endolichenic fungus, Preussia africana. J Nat Prod 2012;75:230-7.

43. Zhang M, Gong Y, Zhou W, Zhou Y, Liu X. Recent advances of chromone-based reactants in the catalytic asymmetric domino annulation reaction. Org Chem Front 2021;8:3968-89.

44. Liu X, Zuo X, Wang J, Chang S, Wei Q, Zhou Y. A bifunctional pyrazolone–chromone synthon directed organocatalytic double Michael cascade reaction: forging five stereocenters in structurally diverse hexahydroxanthones. Org Chem Front 2019;6:1485-90.

45. Liu XL, Zhou G, Gong Y, et al. Stereocontrolled synthesis of bispirooxindole-based hexahydroxanthones with five contiguous stereocenters. Org Lett 2019;21:2528-31.

46. Guo DG, Wang HJ, Zhou Y, Liu XL. Advances in chromone-based reactants in the ring opening and skeletal reconstruction reaction: access to skeletally diverse salicyloylbenzene/heterocycle derivatives. Org Biomol Chem 2022;20:4681-98.

47. Chang SQ, Zou X, Gong Y, He XW, Liu XL, Zhou Y. Stereocontrolled construction of six vicinal stereogenic centers on a hexahydroxanthone framework through a formal [2+1+3] annulation. Chem Commun (Camb) 2019;55:14003-6.

48. Li X, Lin MH, Han Y, et al. Asymmetric Diels-Alder reaction of 3-olefinic benzofuran-2-ones and polyenals: construction of chiral spirocyclic benzofuran-2-ones. Org Lett 2014;16:114-7.

49. Zhou Q, Xiao Y, Yuan X, Chen Y. Asymmetric diels-alder reactions of 2,4,6-trienals via tetraenamine catalysis. Asian J Org Chem 2014;3:545-9.

50. Cassani C, Tian X, Escudero-Adán EC, Melchiorre P. Multiple approaches to enantiopure spirocyclic benzofuranones using organocatalytic cascade reactions. Chem Commun (Camb) 2011;47:233-5.

51. Chatterjee I, Bastida D, Melchiorre P. Vinylogous organocatalytic triple cascade reaction: forging six stereocenters in complex spiro-oxindolic cyclohexanes. Adv Synth Catal 2013;355:3124-30.

52. Chintalapudi V, Galvin EA, Greenaway RL, Anderson EA. Combining cycloisomerization with trienamine catalysis: a regiochemically flexible enantio- and diastereoselective synthesis of hexahydroindoles. Chem Commun (Camb) 2016;52:693-6.

53. Cao Y, Jiang X, Liu L, Shen F, Zhang F, Wang R. Enantioselective Michael/cyclization reaction sequence: scaffold-inspired synthesis of spirooxindoles with multiple stereocenters. Angew Chem Int Ed Engl 2011;50:9124-7.

54. Zhang L, Quan W, Liu R, Tian Y, Pan B, Liu X. Diastereoselective construction of a library of structural bispiro[butyrolactone/valerolactone-pyrrolidin-indanedione] hybrids via 1,3-dipolar cycloaddition reactions. New J Chem 2022;46:11975-9.

55. Wang ZH, Wu ZJ, Yue DF, et al. Organocatalytic asymmetric [3+2] cycloaddition of N-2,2,2-trifluoroethylisatin ketimines with 3-alkenyl-5-arylfuran-2(3H)-ones. Chem Commun (Camb) 2016;52:11708-11.

56. Zhou F, Zhu L, Pan BW, Shi Y, Liu YL, Zhou J. Catalytic enantioselective construction of vicinal quaternary carbon stereocenters. Chem Sci 2020;11:9341-65.

57. Steven A, Overman LE. Total synthesis of complex cyclotryptamine alkaloids: stereocontrolled construction of quaternary carbon stereocenters. Angew Chem Int Ed Engl 2007;46:5488-508.

58. Büschleb M, Dorich S, Hanessian S, Tao D, Schenthal KB, Overman LE. Synthetic strategies toward natural products containing contiguous stereogenic quaternary carbon atoms. Angew Chem Int Ed Engl 2016;55:4156-86.

59. Long R, Huang J, Gong J, Yang Z. Direct construction of vicinal all-carbon quaternary stereocenters in natural product synthesis. Nat Prod Rep 2015;32:1584-601.

60. Companyó X, Zea A, Alba AN, Mazzanti A, Moyano A, Rios R. Organocatalytic synthesis of spiro compounds via a cascade Michael-Michael-aldol reaction. Chem Commun (Camb) 2010;46:6953-5.

61. Li X, Yang C, Jin JL, Xue XS, Cheng JP. Synthesis of optically enriched spirocyclic benzofuran-2-ones by bifunctional thiourea-base catalyzed double-Michael addition of benzofuran-2-ones to dienones. Chem Asian J 2013;8:997-1003.

62. Kassa J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. J Toxicol Clin Toxicol 2002;40:803-16.

63. Dawson RM. Review of oximes available for treatment of nerve agent poisoning. J Appl Toxicol 1994;14:317-31.

64. Zhang M, Wang J, Chang S, Liu X, Zuo X, Zhou Y. Highly efficient enantioselective synthesis of bispiro[benzofuran-oxindole/benzofuran-chromanone]s through organocatalytic inter-/intramolecular Michael cycloaddition. Chinese Chem Lett 2020;31:381-5.

65. Itazaki H, Nagashima K, Kawamura Y, Matsumoto K, Nakai H, Terui Y. Cinatrins, a novel family of phospholipase A2 inhibitors. I. Taxonomy and fermentation of the producing culture; isolation and structures of cinatrins. J Antibiot (Tokyo) 1992;45:38-49.

66. Tanaka K, Itazaki H, Yoshida T. Cinatrins, a novel family of phospholipase A2 inhibitors. II. Biological activities. J Antibiot (Tokyo) 1992;45:50-5.

67. Keyzers RA, Daoust J, Davies-Coleman MT, et al. Autophagy-modulating aminosteroids isolated from the sponge Cliona celata. Org Lett 2008;10:2959-62.

68. Machida K, Kikuchi M. Studies on the constituents of viburnum species. VIII. GAMMA.-lactone glycosides from the leaves of viburnum wrightii MIQ. Chem Pharm Bull 1994;42:1388-92.

69. Li XL, Cheng X, Yang LM, et al. Dichotomains A and B: two new highly oxygenated phenolic derivatives from Dicranopteris dichotoma. Org Lett 2006;8:1937-40.

70. Perold GW, Pachler KGR. The structure and chemistry of leucodrin. J Chem Soc , C 1966; doi: 10.1039/j39660001918.

71. Wang ZD, Wang F, Li X, Cheng JP. N-heterocyclic carbene catalyzed annulation of benzofuran-2,3-diones and enals: a concise synthesis of spiro-bis-lactone. Org Biomol Chem 2013;11:5634-41.

72. Jiang X, Cao Y, Wang Y, Liu L, Shen F, Wang R. A unique approach to the concise synthesis of highly optically active spirooxazolines and the discovery of a more potent oxindole-type phytoalexin analogue. J Am Chem Soc 2010;132:15328-33.

73. Chen WB, Wu ZJ, Hu J, Cun LF, Zhang XM, Yuan WC. Organocatalytic direct asymmetric aldol reactions of 3-isothiocyanato oxindoles to ketones: stereocontrolled synthesis of spirooxindoles bearing highly congested contiguous tetrasubstituted stereocenters. Org Lett 2011;13:2472-5.

74. Lin Y, Liu L, Du D. Squaramide-catalyzed asymmetric Michael/cyclization cascade reaction of 3-isothiocyanato oxindoles with chalcones for synthesis of pyrrolidinyl spirooxindoles. Org Chem Front 2017;4:1229-38.

75. Zhao H, Tian T, Pang H, et al. Organocatalytic [3+2] cycloadditions of barbiturate-based olefins with 3-isothiocyanato oxindoles: highly diastereoselective and enantioselective synthesis of dispirobarbiturates. Adv Synth Catal 2016;358:2619-30.

76. Du D, Xu Q, Li XG, Shi M. Construction of spirocyclic oxindoles through regio- and stereoselective [3+2] or [3+2]/[4+2] cascade reaction of α,β-unsaturated imines with 3-isothiocyanato oxindole. Chem Eur J 2016;22:4733-7.

77. Wang L, Yang D, Li D, et al. Catalytic Asymmetric [3 + 2] cyclization reactions of 3-isothiocyanato oxindoles and alkynyl ketones via an in situ generated magnesium catalyst. Org Lett 2015;17:4260-3.

78. Kayal S, Mukherjee S. Catalytic Aldol-Cyclization Cascade of 3-Isothiocyanato Oxindoles with α-Ketophosphonates for the Enantioselective Synthesis of β-Amino-α-hydroxyphosphonates. Org Lett 2015;17:5508-11.

79. Wang L, Yang D, Li D, Wang R. Catalytic enantioselective ring-opening and ring-closing reactions of 3-isothiocyanato oxindoles and N-(2-Picolinoyl)aziridines. Org Lett 2015;17:3004-7.

80. Jiang X, Wang Y, Zhang G, et al. Enantioselective synthesis of cyclic thioureas via mannich reaction and concise synthesis of highly optically active methylthioimidazolines: discovery of a more potent antipyretic agent. Adv Synth Catal 2011;353:1787-96.

81. Liu RM, Zhang M, Han XX, et al. Catalytic asymmetric Michael/cyclization reaction of 3-isothiocyanato thiobutyrolactone: an approach to the construction of a library of bispiro[pyrazolone-thiobutyrolactone] skeletons. Org Biomol Chem 2022;20:5060-5.

82. Kumar V, Kaur K, Gupta GK, Sharma AK. Pyrazole containing natural products: synthetic preview and biological significance. Eur J Med Chem 2013;69:735-53.

83. Chauhan P, Mahajan S, Enders D. Asymmetric synthesis of pyrazoles and pyrazolones employing the reactivity of pyrazolin-5-one derivatives. Chem Commun (Camb) 2015;51:12890-907.

84. Kuo SC, Huang LJ, Nakamura H. Studies on heterocyclic compounds. 6. Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives. J Med Chem 1984;27:539-44.

85. Wilde F, Specker E, Neuenschwander M, Nazaré M, Bodtke A, Link A. Tractable synthesis of multipurpose screening compounds with under-represented molecular features for an open access screening platform. Mol Divers 2014;18:483-95.

86. Kakiuchi Y, Sasaki N, Satoh-Masuoka M, Murofushi H, Murakami-Murofushi K. A novel pyrazolone, 4,4-dichloro-1-(2,4-dichlorophenyl)-3-methyl-5-pyrazolone, as a potent catalytic inhibitor of human telomerase. Biochem Biophys Res Commun 2004;320:1351-8.

87. Liu S, Bao X, Wang B. Pyrazolone: a powerful synthon for asymmetric diverse derivatizations. Chem Commun (Camb) 2018;54:11515-29.

88. Wang L, Shi XM, Dong WP, Zhu LP, Wang R. Efficient construction of highly functionalized spiro[γ-butyrolactone-pyrrolidin-3,3’-oxindole] tricyclic skeletons via an organocatalytic 1,3-dipolar cycloaddition. Chem Commun (Camb) 2013;49:3458-60.

89. Chen N, Zhu L, Gan L, et al. Asymmetric synthesis of bispiro[γ-butyrolactone-pyrrolidin-4,4’-pyrazolone] scaffolds containing two quaternary spirocenters via an organocatalytic 1,3-dipolar cycloaddition: asymmetric synthesis of bispiro[γ-butyrolactone-pyrrolidin-4,4’-pyrazolone] scaffolds containing two quaternary spirocenters via an organocatalytic 1. Eur J Org Chem 2018;2018:2939-43.

90. Kowalczyk-Dworak D, Albrecht Ł. α,β-unsaturated butenolides in an organocatalytic doubly annulative cascade for the preparation of 3,4-dihydrocoumarins. Org Biomol Chem 2019;17:2624-8.

91. Guo D, Li Z, Han X, Zhang L, Zhang M, Liu X. Decarboxylative, diastereoselective and exo-selective 1,3-dipolar cycloaddition for diversity-oriented construction of structural spiro[butyrolactone–pyrrolidine–chromanone] hybrids. Synlett 2021;32:1447-52.

92. Guo Y, Meng C, Liu X, et al. Successive waste as reagent: two more steps forward in a pinnick oxidation. Org Lett 2018;20:913-6.

93. Mostinski Y, Lankri D, Tsvelikhovsky D. Transition-metal-catalyzed synthesis of spirolactones. Synthesis 2017;49:2361-73.

94. Hazra A, Paira P, Sahu KB, et al. Chemistry of andrographolide: formation of novel di-spiropyrrolidino and di-spiropyrrolizidino-oxindole adducts via one-pot three-component [3+2] azomethine ylide cycloaddition. Tetrahedron Lett 2010;51:1585-8.

95. Cui BD, Zuo J, Zhao JQ, et al. Tandem Michael addition-ring transformation reactions of 3-hydroxyoxindoles/3-aminooxindoles with olefinic azlactones: direct access to structurally diverse spirocyclic oxindoles. J Org Chem 2014;79:5305-14.

96. Chen L, Wu ZJ, Zhang ML, et al. Organocatalytic asymmetric michael/cyclization cascade reactions of 3-hydroxyoxindoles/3-aminooxindoles with α,β-unsaturated acyl phosphonates for the construction of spirocyclic oxindole-γ-lactones/lactams. J Org Chem 2015;80:12668-75.

97. Ma SS, Mei WL, Guo ZK, et al. Two new types of bisindole alkaloid from Trigonostemon lutescens. Org Lett 2013;15:1492-5.

98. Yu B, Yu DQ, Liu HM. Spirooxindoles: promising scaffolds for anticancer agents. Eur J Med Chem 2015;97:673-98.

99. Purser S, Moore PR, Swallow S, Gouverneur V. Fluorine in medicinal chemistry. Chem Soc Rev 2008;37:320-30.

100. O’hagan D. Fluorine in health care: Organofluorine containing blockbuster drugs. J Fluorine Chem 2010;131:1071-81.

101. Wang J, Sánchez-Roselló M, Aceña JL, et al. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem Rev 2014;114:2432-506.

102. Yang ZT, Zhao J, Yang WL, Deng WP. Enantioselective construction of CF3-containing spirooxindole γ-lactones via organocatalytic asymmetric Michael/lactonization. Org Lett 2019;21:1015-20.

103. Ming S, Zhao BL, Du DM. Chiral squaramide-catalysed enantioselective Michael/cyclization cascade reaction of 3-hydroxyoxindoles with α,β-unsaturated N-acylated succinimides. Org Biomol Chem 2017;15:6205-13.

104. Zhu SJ, Hao ZF, Pan Y, et al. Asymmetric formal (3 + 2) cyclocondensation of coumarin-3-formylpyrazoles as 3-carbon partners with 3-hydroxyoxindoles via esterification/Michael addition sequence. J Org Chem 2022;87:15210-23.

105. Lee KY, Park DY, Kim JN. Synthesis of β,γ,γ-tri- or γ,γ-disubstituted α-methylene-γ-butyrolactones starting from the Baylis-Hillman adducts. Bull Korean Chem Soc 2006;27:1489-92.

106. Kitson RR, Millemaggi A, Taylor RJ. The renaissance of alpha-methylene-gamma-butyrolactones: new synthetic approaches. Angew Chem Int Ed Engl 2009;48:9426-51.

107. Elford T, Hall D. Advances in 2-(alkoxycarbonyl)allylboration of carbonyl compounds and other direct methods for the preparation of α-exo-alkylidene γ-lactones. Synthesis 2010;2010:893-907.

108. Baeuerle PA, Baltimore D. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-κB transcription factor. Cell 1988;53:211-7.

109. Ruben SM, Dillon PJ, Schreck R, et al. Isolation of a rel-related human cDNA that potentially encodes the 65-kD subunit of NF-kappa B. Science 1991;254:11.

110. Schmitz ML, Baeuerle PA. The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B. EMBO J 1991;10:3805-17.

111. Konaklieva MI, Plotkin BJ. Lactones: generic inhibitors of enzymes? Mini Rev Med Chem 2005;5:73-95.

112. Wang QL, Peng L, Wang FY, et al. An organocatalytic asymmetric sequential allylic alkylation-cyclization of Morita-Baylis-Hillman carbonates and 3-hydroxyoxindoles. Chem Commun (Camb) 2013;49:9422-4.

113. Jayakumar S, Muthusamy S, Prakash M, Kesavan V. Enantioselective synthesis of spirooxindole α-. exo ;2014:1893-8.

114. White NA, Rovis T. Enantioselective N-heterocyclic carbene-catalyzed β-hydroxylation of enals using nitroarenes: an atom transfer reaction that proceeds via single electron transfer. J Am Chem Soc 2014;136:14674-7.

115. Zhang Y, Du Y, Huang Z, et al. N-heterocyclic carbene-catalyzed radical reactions for highly enantioselective β-hydroxylation of enals. J Am Chem Soc 2015;137:2416-9.

116. White NA, Rovis T. Oxidatively initiated NHC-catalyzed enantioselective synthesis of 3,4-disubstituted cyclopentanones from enals. J Am Chem Soc 2015;137:10112-5.

117. Chen XY, Chen KQ, Sun DQ, Ye S. N-heterocyclic carbene-catalyzed oxidative [3 + 2] annulation of dioxindoles and enals: cross coupling of homoenolate and enolate. Chem Sci 2017;8:1936-41.

118. Song ZY, Chen KQ, Chen XY, Ye S. Diastereo- and enantioselective synthesis of spirooxindoles with contiguous tetrasubstituted stereocenters via catalytic coupling of two tertiary radicals. J Org Chem 2018;83:2966-70.

119. Mahatthananchai J, Bode JW. On the mechanism of N-heterocyclic carbene-catalyzed reactions involving acyl azoliums. Acc Chem Res 2014;47:696-707.

120. Sarkar S, Biswas A, Samanta RC, Studer A. Catalysis with N-heterocyclic carbenes under oxidative conditions. Chem Eur J 2013;19:4664-78.

121. Mukherjee S, Joseph S, Bhunia A, Gonnade RG, Yetra SR, Biju AT. Enantioselective synthesis of spiro γ-butyrolactones by N-heterocyclic carbene (NHC)-catalyzed formal [3 + 2] annulation of enals with 3-hydroxy oxindoles. Org Biomol Chem 2017;15:2013-9.

122. Ueda T, Inada M, Okamoto I, Morita N, Tamura O. Synthesis of maremycins A and D1 via cycloaddition of a nitrone with (E)-3-ethylidene-1-methylindolin-2-one. Org Lett 2008;10:2043-6.

123. Bergonzini G, Melchiorre P. Dioxindole in asymmetric catalytic synthesis: routes to enantioenriched 3-substituted 3-hydroxyoxindoles and the preparation of maremycin A. Angew Chem Int Ed Engl 2012;51:971-4.

124. Zhu SY, Zhang H, Ma QW, Liu D, Hui XP. Oxidative NHC catalysis: direct activation of β sp(3) carbons of saturated acid chlorides. Chem Commun (Camb) 2019;55:298-301.

125. Dugal-tessier J, O'bryan EA, Schroeder TBH, Cohen DT, Scheidt KA. An N-heterocyclic carbene/lewis acid strategy for the stereoselective synthesis of spirooxindole lactones. Angew Chem 2012;124:5047-51.

126. Curti C, Rassu G, Zambrano V, et al. Bifunctional cinchona alkaloid/thiourea catalyzes direct and enantioselective vinylogous Michael addition of 3-alkylidene oxindoles to nitroolefins. Angew Chem Int Ed Engl 2012;51:6200-4.

127. Rassu G, Zambrano V, Pinna L, et al. Direct regio-, diastereo-, and enantioselective vinylogous michael addition of prochiral 3-alkylideneoxindoles to nitroolefins. Adv Synth Catal 2013;355:1881-6.

128. Han JL, Chang CH. An asymmetric assembly of spirooxindole dihydropyranones through a direct enantioselective organocatalytic vinylogous aldol-cyclization cascade reaction of 3-alkylidene oxindoles with isatins. Chem Commun (Camb) 2016;52:2322-5.

129. Harris JM, O'Doherty GA. Enantioselective syntheses of isoaltholactone, 3-epi-altholactone, and 5-hydroxygoniothalamin. Org Lett 2000;2:2983-6.

130. Yoshimura F, Torizuka M, Mori G, Tanino K. Intramolecular conjugate addition of α,β-unsaturated lactones having an alkanenitrile side chain: stereocontrolled construction of carbocycles with quaternary carbon atoms. Synlett 2012;2012:251-4.

131. Wang ZH, Zhang XY, Lei CW, Zhao JQ, You Y, Yuan WC. Highly enantioselective sequential vinylogous aldol reaction/transesterification of methyl-substituted olefinic butyrolactones with isatins for the construction of chiral spirocyclic oxindole-dihydropyranones. Chem Commun (Camb) 2019;55:9327-30.

132. Gao TP, Lin JB, Hu XQ, Xu PF. A catalytic asymmetric hetero-Diels-Alder reaction of olefinic azlactones and isatins: facile access to chiral spirooxindole dihydropyranones. Chem Commun (Camb) 2014;50:8934-6.

133. Que Y, Li T, Yu C, Wang XS, Yao C. Enantioselective assembly of spirocyclic oxindole-dihydropyranones through NHC-catalyzed cascade reaction of isatins with N-hydroxybenzotriazole esters of α,β-unsaturated carboxylic acid. J Org Chem 2015;80:3289-94.

134. Chen X, Yang S, Song BA, Chi YR. Corrigendum: functionalization of benzylic C(sp3)-H bonds of heteroaryl aldehydes through N-heterocyclic carbene organocatalysis. Angew Chem Int Ed Engl 2017;56:14342.

135. Li TZ, Jiang Y, Guan YQ, Sha F, Wu XY. Direct enantioselective vinylogous aldol-cyclization cascade reaction of allyl pyrazoleamides with isatins: asymmetric construction of spirocyclic oxindole-dihydropyranones. Chem Commun (Camb) 2014;50:10790-2.

136. Zhang YR, He L, Wu X, Shao PL, Ye S. Chiral N-heterocyclic carbene catalyzed staudinger reaction of ketenes with imines: highly enantioselective synthesis of N-Boc beta-lactams. Org Lett 2008;10:277-80.

137. Sun LH, Shen LT, Ye S. Highly diastereo- and enantioselective NHC-catalyzed [3+2] annulation of enals and isatins. Chem Commun (Camb) 2011;47:10136-8.

138. Shen L, Shao P, Ye S. N-heterocyclic carbene-catalyzed cyclization of unsaturated acyl chlorides and ketones. Adv Synth Catal 2011;353:1943-8.

139. Yan J, Shi K, Zhao C, et al. NHC-catalyzed [4+2] cycloaddition reactions for the synthesis of 3’-spirocyclic oxindoles via a C-F bond cleavage protocol. Chem Commun 2018;547:1567-70.

140. Cheng J, Chen X, Gao Z, Ye S. N-heterocyclic carbene catalyzed generation and [4+2] annulation of unsubstituted dienolate - enantioselective synthesis of spirocyclic oxindolodihydropyranones: enantioselective synthesis of spirocyclic oxindolodihydropyranones. Eur J Org Chem 2015;2015:1047-53.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/