REFERENCES

1. Yan W, Noel G, Loke G, et al. Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 2022;603:616-23.

2. Yan W, Dong C, Xiang Y, et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater Today 2020;35:168-94.

3. Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 2014;26:5310-36.

4. Leber A, Dong C, Chandran R, Das Gupta T, Bartolomei N, Sorin F. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat Electron 2020;3:316-26.

5. Song W. A smart sensor that can be woven into everyday life. Nature 2022;603:585-6.

6. Du M, Huang L, Zheng J, et al. Flexible fiber probe for efficient neural stimulation and detection. Adv Sci (Weinh) 2020;7:2001410.

7. Weng W, Yang J, Zhang Y, et al. A route toward smart system integration: from fiber design to device construction. Adv Mater 2020;32:e1902301.

8. Loke G, Alain J, Yan W, et al. Computing fabrics. Matter 2020;2:786-8.

9. Liu M, Lin Z, Wang X, et al. Focused rotary jet spinning: a novel fiber technology for heart biofabrication. Matter 2022;5:3576-9.

10. Jiang S, Patel DC, Kim J, et al. Spatially expandable fiber-based probes as a multifunctional deep brain interface. Nat Commun 2020;11:6115.

11. Xu B, Ma S, Xiang Y, et al. In-fiber structured particles and filament arrays from the perspective of fluid instabilities. Adv Fiber Mater 2020;2:1-12.

12. Pan S, Zhu M. Nanoprocessed silk makes skin feel cool. Adv Fiber Mater 2022;4:319-20.

13. Wang H, Zhang Y, Liang X, Zhang Y. Smart fibers and textiles for personal health management. ACS Nano 2021;15:12497-508.

14. Zhang T, Li K, Zhang J, et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 2017;41:35-42.

15. Martin-monier L, Gupta TD, Yan W, Lacour S, Sorin F. Nanoscale controlled oxidation of liquid metals for stretchable electronics and photonics. Adv Funct Mater 2021;31:2006711.

16. Pan S, Zhu M. Fiber electronics bring a new generation of acoustic fabrics. Adv Fiber Mater 2022;4:321-3.

17. Qian S, Liu M, Dou Y, Fink Y, Yan W. A ‘Moore’s law’ for fibers enables intelligent fabrics. Natl Sci Rev 2023;10:nwac202.

18. Loke G, Khudiyev T, Wang B, et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat Commun 2021;12:3317.

19. Kim J, Jia X. From space to battlefield: a new breed of multifunctional fiber sheets for extreme environments. Matter 2020;3:602-4.

20. Cao Y, Wu H, Allec SI, Wong BM, Nguyen DS, Wang C. A highly stretchy, transparent elastomer with the capability to automatically self-heal underwater. Adv Mater 2018;30:e1804602.

21. Hou C, Jia X, Wei L, et al. Crystalline silicon core fibres from aluminium core preforms. Nat Commun 2015;6:6248.

22. Wei L, Hou C, Levy E, et al. Optoelectronic fibers via selective amplification of in-fiber capillary instabilities. Adv Mater 2017;29:1603033.

23. Qu Y, Nguyen-Dang T, Page AG, et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv Mater 2018;30:e1707251.

24. Yan W, Burgos-caminal A, Das Gupta T, Moser J, Sorin F. Direct synthesis of selenium nanowire mesh on a solid substrate and insights into ultrafast photocarrier dynamics. J Phys Chem C 2018;122:25134-41.

25. Chin AL, Jiang S, Jang E, et al. Implantable optical fibers for immunotherapeutics delivery and tumor impedance measurement. Nat Commun 2021;12:5138.

26. Dong C, Leber A, Das Gupta T, et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat Commun 2020;11:3537.

27. Cao Y, Morrissey TG, Acome E, et al. A Transparent, self-healing, highly stretchable ionic conductor. Adv Mater 2017;29:1605099.

28. Yan W, Richard I, Kurtuldu G, et al. Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat Nanotechnol 2020;15:875-82.

29. Nguyen-dang T, de Luca AC, Yan W, et al. Controlled sub-micrometer hierarchical textures engineered in polymeric fibers and microchannels via thermal drawing. Adv Funct Mater 2017;27:1605935.

30. Zhang Y, Li X, Kim J, et al. Thermally drawn stretchable electrical and optical fiber sensors for multimodal extreme deformation sensing. Adv Optical Mater 2021;9:2001815.

31. Jiang S, Song J, Zhang Y, et al. Nano-optoelectrodes integrated with flexible multifunctional fiber probes by high-throughput scalable fabrication. ACS Appl Mater Interfaces 2021;13:9156-65.

32. Das Gupta T, Martin-Monier L, Yan W, et al. Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities. Nat Nanotechnol 2019;14:320-7.

33. Kim J, Zhao Y, Yang S, et al. Laser machined fiber-based microprobe: application in microscale electroporation. Adv Fiber Mater 2022;4:859-72.

34. Dong C, Page AG, Yan W, Nguyen-dang T, Sorin F. Microstructured multimaterial fibers for microfluidic sensing. Adv Mater Technol 2019;4:1900417.

35. Grena B, Alayrac JB, Levy E, Stolyarov AM, Joannopoulos JD, Fink Y. Thermally-drawn fibers with spatially-selective porous domains. Nat Commun 2017;8:364.

36. Sun H, Xie S, Li Y, et al. Large-area supercapacitor textiles with novel hierarchical conducting structures. Adv Mater 2016;28:8431-8.

37. Khudiyev T, Lee JT, Cox JR, et al. 100 m long thermally drawn supercapacitor fibers with applications to 3D printing and textiles. Adv Mater 2020;32:e2004971.

38. Zhang J, Zhang T, Zhang H, et al. Single-crystal snse thermoelectric fibers via laser-induced directional crystallization: from 1d fibers to multidimensional fabrics. Adv Mater 2020;32:e2002702.

39. Yan W, Qu Y, Gupta TD, et al. Semiconducting nanowire-based optoelectronic fibers. Adv Mater 2017;29:1700681.

40. Hou C, Jia X, Wei L, et al. Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing. Nano Lett 2013;13:975-9.

41. Zhang H, li L, Zheng D, et al. Broadband photodetector based on vapor-deposited selenium self-supporting films. Ceramics International 2022;48:27750-7.

42. Shalaev VM. Physics Transforming light. Science 2008;322:384-6.

43. Hu K, Chen H, Jiang M, Teng F, Zheng L, Fang X. Broadband photoresponse enhancement of a high-performance t -Se microtube photodetector by plasmonic metallic nanoparticles. Adv Funct Mater 2016;26:6641-8.

44. Kumar M, Dubey A, Adhikari N, Venkatesan S, Qiao Q. Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS-Se solar cells. Energy Environ Sci 2015;8:3134-59.

45. Wang S, Liu X, Zhou P. The road for 2D semiconductors in the silicon age. Adv Mater 2022;34:e2106886.

46. Kang SK, Park G, Kim K, et al. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. ACS Appl Mater Interfaces 2015;7:9297-305.

47. Khalid A, Tran PA, Norello R, Simpson DA, O’Connor AJ, Tomljenovic-Hanic S. Intrinsic fluorescence of selenium nanoparticles for cellular imaging applications. Nanoscale 2016;8:3376.

48. Ramírez-montes L, López-pérez W, González-hernández R, Pinilla C. Large thermoelectric figure of merit in hexagonal phase of 2D selenium and tellurium. Int J Quantum Chem 2020:120.

49. Qin JK, Zhou F, Wang J, Chen J, et al. Anisotropic signal processing with trigonal selenium nanosheet synaptic transistors. ACS Nano 2020;14:10018-26.

50. Huang W, Wang M, Hu L, Wang C, Xie Z, Zhang H. Recent advances in semiconducting monoelemental selenium nanostructures for device applications. Adv Funct Mater 2020;30:2003301.

51. Kumar A, Sevonkaev I, Goia DV. Synthesis of selenium particles with various morphologies. J Colloid Interf Sci 2014;416:119-123.

52. Gao X, Zhang J, Zhang L. Hollow sphere selenium nanoparticles: their in-vitro anti hydroxyl radical effect. Adv Mater 2002;14:290-3.

53. Zhang J, Xu Y, Fan L, Zhu Y, Liang J, Qian Y. Graphene-encapsulated selenium/polyaniline core-shell nanowires with enhanced electrochemical performance for Li-Se batteries. Nano Energy 2015;13:592-600.

54. Zhu Y, Hu X. Preparation of powders of selenium nanorods and nanowires by microwave-polyol method. Mater Lett 2004;58:1234-6.

55. Xi G, Xiong K, Zhao Q, Zhang R, Zhang H, Qian Y. Nucleation-dissolution-recrystallization:  a new growth mechanism for t -selenium nanotubes. Crystal Growth & Design 2006;6:577-82.

56. Ma Y, Qi L, Shen W, Ma J. Selective synthesis of single-crystalline selenium nanobelts and nanowires in micellar solutions of nonionic surfactants. Langmuir 2005;21:6161-4.

57. Qin J, Qiu G, Jian J, et al. Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications. ACS Nano 2017;11:10222-9.

58. Xing C, Xie Z, Liang Z, et al. 2D Nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics. Adv Optical Mater 2017;5:1700884.

59. Shi Z, Zhang H, Khan K, Cao R, Xu K, Zhang H. Two-dimensional selenium and its composites for device applications. Nano Res 2022;15:104-22.

60. Liu C, Hu T, Wu Y B, et al. 2D selenium allotropes from first principles and swarm intelligence. J Phys Condens Matter 2019;31:235702.

61. Xian L, Pérez Paz A, Bianco E, Ajayan PM, Rubio A. Square selenene and tellurene: novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater 2017;4:041003.

62. Degtyareva O, Gregoryanz E, Somayazulu M, Mao H, Hemley RJ. Crystal structure of the superconducting phases of S and Se. Phys Rev B 2005;71:214104.

63. Cherin P, Unger P. The crystal structure of trigonal selenium. Inorg Chem 1967;6:1589-91.

64. Anupama K, Paul T, Mary KAA. Solid-state fluorescent selenium quantum dots by a solvothermal assisted sol-gel route for curcumin sensing. ACS Omega 2021;6:21525-33.

65. Ayyyzhy KO, Voronov VV, Gudkov SV, Rakov II, Simakin AV, Shafeev GA. Laser fabrication and fragmentation of selenium nanoparticles in aqueous media. Phys Wave Phen 2019;27:113-8.

66. Salazar-alvarez G, Muhammed M, Zagorodni AA. Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci 2006;61:4625-33.

67. Basak S, Chen D, Biswas P. Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law. Chem Eng Sci 2007;62:1263-8.

68. Gates B, Mayers B, Cattle B, Xia Y. Synthesis and characterization of uniform nanowires of trigonal selenium. Adv Funct Mater 2002;12:219.

69. Chen YZ, You YT, Chen PJ, et al. Environmentally and mechanically stable selenium 1D/2D hybrid structures for broad-range photoresponse from ultraviolet to infrared wavelengths. ACS Appl Mater Interfaces 2018;10:35477-86.

70. Yaman M, Khudiyev T, Ozgur E, et al. Arrays of indefinitely long uniform nanowires and nanotubes. Nat Mater 2011;10:494-501.

71. Kasirga TS. Chemical vapor transport synthesis of a selenium-based two-dimensional material. Turk J Phys 2018:42.

72. Filippo E, Manno D, Serra A. Characterization and growth mechanism of selenium microtubes synthesized by a vapor phase deposition route. Crystal Growth & Design 2010;10:4890-7.

73. Cheng M, Wu S, Zhu Z, Guo G. Large second-harmonic generation and linear electro-optic effect in trigonal selenium and tellurium. Phys Rev B 2019:100.

74. Jun SW, Jeon S, Kwon J, Lee J, Kim C, Hong SW. Full-color laser displays based on optical second-harmonic generation from the thin film arrays of selenium nanowires. ACS Photonics 2022;9:368-77.

75. Gumennik A, Stolyarov AM, Schell BR, et al. All-in-fiber chemical sensing. Adv Mater 2012;24:6005-9.

76. Deng DS, Orf ND, Abouraddy AF, et al. In-fiber semiconductor filament arrays. Nano Lett 2008;8:4265-9.

77. Yan W, Nguyen-dang T, Cayron C, et al. Microstructure tailoring of selenium-core multimaterial optoelectronic fibers. Opt Mater Express 2017;7:1388.

78. Jiang X, Huang W, Wang R, et al. Photocarrier relaxation pathways in selenium quantum dots and their application in UV-Vis photodetection. Nanoscale 2020;12:11232-41.

79. Shin D, Zhu T, Huang X, Gunawan O, Blum V, Mitzi DB. Earth-abundant chalcogenide photovoltaic devices with over 5% efficiency based on a Cu2 BaSn(S,Se)4 absorber. Adv Mater 2017;29:1606945.

80. Jayswal NK, Rijal S, Subedi B, et al. Optical properties of thin film Sb2Se3 and identification of its electronic losses in photovoltaic devices. Solar Energy 2021;228:38-44.

81. Hadar I, Song T, Ke W, Kanatzidis MG. Modern processing and insights on selenium solar cells: the world’s first photovoltaic device. Adv Energy Mater 2019;9:1802766.

82. Liu SC, Dai CM, Min Y, et al. An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics. Nat Commun 2021;12:670.

83. Seo Y, Lee B, Jo Y, et al. Facile microwave-assisted synthesis of multiphase CuInSe2 nanoparticles and role of secondary cuse phase on photovoltaic device performance. J Phys Chem C 2013;117:9529-36.

84. Ulaganathan RK, Yadav K, Sankar R, Chou FC, Chen Y. Hybrid InSe nanosheets and MoS2 quantum dots for high-performance broadband photodetectors and photovoltaic cells. Adv Mater Interfaces 2019;6:1801336.

85. Wu M, Wang Y, Gao S, et al. Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring. Nano Energy 2019;56:693-9.

86. Harkin JM, Dong A, Chesters G. Elevation of selenium levels in air by xerography. Nature 1976;259:204-5.

87. Zhu B, Wu L, Wang Y, et al. A highly selective and ultrasensitive ratiometric far-red fluorescent probe for imaging endogenous peroxynitrite in living cells. Sensor Actuat B-Chem 2018;259:797-802.

88. Manjare ST, Kim Y, Churchill DG. Selenium- and tellurium-containing fluorescent molecular probes for the detection of biologically important analytes. Acc Chem Res 2014;47:2985-98.

89. Triet Ho LT, Mukherjee A, Vasileska D, et al. Modeling dark current conduction mechanisms and mitigation techniques in vertically stacked amorphous selenium-based photodetectors. ACS Appl Electron Mater 2021;3:3538-46.

90. Liao ZM, Hou C, Liu LP, Yu DP. Temperature dependence of photoelectrical properties of single selenium nanowires. Nanoscale Res Lett 2010;5:926-9.

91. Luo LB, Jie JS, Chen ZH, et al. Photoconductive properties of selenium nanowire photodetectors. J Nanosci Nanotechnol 2009;9:6292-8.

92. Akiyama N. A sensor array based on trigonal-selenium nanowires for the detection of gas mixtures. Sensor Actuat B-Chem 2016;223:131-7.

93. Yan W, Page A, Nguyen-Dang T, et al. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv Mater 2019;31:e1802348.

94. Luo L, Yang X, Liang F, et al. Transparent and flexible selenium nanobelt-based visible light photodetector. CrystEngComm 2012;14:1942.

95. Ji L, Rao M, Zheng H, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 2011;133:18522-5.

96. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater 2011;11:19-29.

97. Luo C, Xu Y, Zhu Y, et al. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano 2013;7:8003-10.

98. Guo J, Xu Y, Wang C. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett 2011;11:4288-94.

99. Abouimrane A, Dambournet D, Chapman KW, Chupas PJ, Weng W, Amine K. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J Am Chem Soc 2012;134:4505-8.

100. Liu L, Hou Y, Wu X, et al. Nanoporous selenium as a cathode material for rechargeable lithium-selenium batteries. Chem Commun (Camb) 2013;49:11515-7.

101. Yang CP, Xin S, Yin YX, Ye H, Zhang J, Guo YG. An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. Angew Chem Int Ed Engl 2013;52:8363-7.

102. Zhang Z, Zhang Z, Zhang K, Yang X, Li Q. Improvement of electrochemical performance of rechargeable lithium-selenium batteries by inserting a free-standing carbon interlayer. RSC Adv 2014;4:15489-92.

103. Zeng L, Zeng W, Jiang Y, et al. A flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li-Se and Na-Se batteries. Adv Energy Mater 2015;5:1401377.

104. Han K, Liu Z, Ye H, Dai F. Flexible self-standing graphene-Se@CNT composite film as a binder-free cathode for rechargeable Li-Se batteries. J Power Sources 2014;263:85-9.

105. Yuan B, Sun X, Zeng L, Yu Y, Wang Q. A Freestanding and long-life sodium-selenium cathode by encapsulation of selenium into microporous multichannel carbon nanofibers. Small 2018;14:1703252.

106. Marion JS, Gupta N, Cheung H, Monir K, Anikeeva P, Fink Y. Thermally drawn highly conductive fibers with controlled elasticity. Adv Mater 2022;34:e2201081.

107. Deng DS, Nave JC, Liang X, Johnson SG, Fink Y. Exploration of in-fiber nanostructures from capillary instability. Opt Express 2011;19:16273-90.

108. Esposito W, Martin-Monier L, Piveteau PL, Xu B, Deng D, Sorin F. Controlled filamentation instability as a scalable fabrication approach to flexible metamaterials. Nat Commun 2022;13:6154.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/