REFERENCES

1. Liu C, Uslamin EA, Khramenkova E, et al. High stability of methanol to aromatic conversion over bimetallic Ca,Ga-modified ZSM-5. ACS Catal 2022;12:3189-200.

2. Přech J, Strossi Pedrolo DR, Marcilio NR, et al. Core-shell metal zeolite composite catalysts for in situ processing of fischer-tropsch hydrocarbons to gasoline type fuels. ACS Catal 2020;10:2544-55.

3. Wang X, Zeng C, Gong N, et al. Effective suppression of CO selectivity for CO2 hydrogenation to high-quality gasoline. ACS Catal 2021;11:1528-47.

4. Zuo J, Liu C, Han X, et al. Steering CO2 hydrogenation coupled with benzene alkylation toward ethylbenzene and propylbenzene using a dual-bed catalyst system. Chem Catalysis 2022;2:1223-40.

5. Shen X, Kang J, Niu W, Wang M, Zhang Q, Wang Y. Impact of hierarchical pore structure on the catalytic performances of MFI zeolites modified by ZnO for the conversion of methanol to aromatics. Catal Sci Technol 2017;7:3598-612.

6. Wang N, Hou Y, Sun W, et al. Modulation of b-axis thickness within MFI zeolite: correlation with variation of product diffusion and coke distribution in the methanol-to-hydrocarbons conversion. Appl Catal B-Environ 2019;243:721-33.

7. Derouane E. A novel effect of shape selectivity: Molecular traffic control in zeolite ZSM-5. J Catal 1980;65:486-9.

8. Zeng S, Xu S, Gao S, et al. Differentiating diffusivity in different channels of ZSM-5 zeolite by pulsed field gradient (PFG) NMR. ChemCatChem 2020;12:463-8.

9. Cnudde P, De Wispelaere K, Vanduyfhuys L, et al. How chain length and branching influence the alkene cracking reactivity on H-ZSM-5. ACS Catal 2018;8:9579-95.

10. Xu Y, Ma G, Bai J, Du Y, Qin C, Ding M. Yolk@Shell FeMn@Hollow HZSM-5 nanoreactor for directly converting syngas to aromatics. ACS Catal 2021;11:4476-85.

11. Liu C, Su J, Liu S, et al. Insights into the key factor of zeolite morphology on the selective conversion of syngas to light aromatics over a Cr2O3/ZSM-5 catalyst. ACS Catal 2020;10:15227-37.

12. Wang Y, Tan L, Tan M, et al. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics. ACS Catal 2019;9:895-901.

13. Wang Y, Kazumi S, Gao W, et al. Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway. Appl Catal B-Environ 2020;269:118792.

14. Wang T, Xu Y, Li Y, et al. Sodium-mediated bimetallic Fe-Ni catalyst boosts stable and selective production of light aromatics over HZSM-5 zeolite. ACS Catal 2021;11:3553-74.

15. Liao Y, Zhong R, Makshina E, et al. Propylphenol to phenol and propylene over acidic zeolites: role of shape selectivity and presence of steam. ACS Catal 2018;8:7861-78.

16. Li J, Gong Q, Lian H, Hu Z, Zhu Z. New process for 2,6-dimethylnaphthalene synthesis by using C10 aromatics as solvent and transmethylation-agentia: high-efficiency and peculiar subarea-catalysis over shape-selective ZSM-5/Beta catalyst. Ind Eng Chem Res 2019;58:12593-601.

17. Liu F, Willhammar T, Wang L, et al. ZSM-5 zeolite single crystals with b-axis-aligned mesoporous channels as an efficient catalyst for conversion of bulky organic molecules. J Am Chem Soc 2012;134:4557-60.

18. Ali B, Lan X, Arslan MT, Gilani SZA, Wang H, Wang T. Controlling the selectivity and deactivation of H-ZSM-5 by tuning b-axis channel length for glycerol dehydration to acrolein. J Ind Eng Chem 2020;88:127-36.

19. Zhang J, Ren L, Zhou A, et al. Tailored synthesis of ZSM-5 nanosheets with controllable. b ;34:3217-26.

20. Ye J, Bai L, Liu B, et al. Fabrication of a pillared ZSM-5 framework for shape selectivity of ethane dehydroaromatization. Ind Eng Chem Res 2019;58:7094-106.

21. Ma Z, Fu T, Wang Y, et al. Silicalite-1 derivational desilication-recrystallization to prepare hollow Nano-ZSM-5 and Highly mesoporous micro-ZSM-5 catalyst for methanol to hydrocarbons. Ind Eng Chem Res 2019;58:2146-58.

22. Xu Y, Wang J, Ma G, Lin J, Ding M. Designing of hollow ZSM-5 with controlled mesopore sizes to boost gasoline production from syngas. ACS Sustainable Chem Eng 2019;7:18125-32.

23. Zhang H, Song K, Wang L, Zhang H, Zhang Y, Tang Y. Organic structure directing agent-free and seed-induced synthesis of enriched intracrystal mesoporous ZSM-5 zeolite for shape-selective reaction. ChemCatChem 2013;5:2874-8.

24. Kang J, Cheng K, Zhang L, et al. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5-C11 isoparaffins. Angew Chem Int Ed Engl 2011;50:5200-3.

25. Knott BC, Nimlos CT, Robichaud DJ, Nimlos MR, Kim S, Gounder R. Consideration of the aluminum distribution in zeolites in theoretical and experimental catalysis research. ACS Catal 2018;8:770-84.

26. Sharada S, Zimmerman PM, Bell AT, Head-gordon M. Insights into the kinetics of cracking and dehydrogenation reactions of light alkanes in H-MFI. J Phys Chem C 2013;117:12600-11.

27. Wang S, Li Z, Qin Z, et al. Catalytic roles of the acid sites in different pore channels of H-ZSM-5 zeolite for methanol-to-olefins conversion. Chinese J Catal 2021;42:1126-36.

28. Sun Q, Wang N, Fan Q, et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation. Angewandte Chemie 2020;132:19618-27.

29. Sun Q, Chen BWJ, Wang N, et al. Zeolite-encaged Pd-Mn nanocatalysts for CO2 hydrogenation and formic acid dehydrogenation. Angew Chem Int Ed Engl 2020;59:20183-91.

30. Liu L, Lopez-Haro M, Lopes CW, et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat Mater 2019;18:866-73.

31. Yang L, Yan T, Wang C, et al. Role of acetaldehyde in the roadmap from initial carbon-carbon bonds to hydrocarbons during methanol conversion. ACS Catal 2019;9:6491-501.

32. Fu D, Maris JJE, Stanciakova K, et al. Unravelling channel structure-diffusivity relationships in zeolite ZSM-5 at the single-molecule level. Angewandte Chemie 2022:134.

33. Yang L, Wang C, Dai W, Wu G, Guan N, Li L. Progressive steps and catalytic cycles in methanol-to-hydrocarbons reaction over acidic zeolites. Fundamental Res 2022;2:184-92.

34. Gobin O, Reitmeier S, Jentys A, Lercher J. Diffusion pathways of benzene, toluene and p-xylene in MFI. Microporous Mesoporous Mater 2009;125:3-10.

35. Deluca M, Hibbitts D. Predicting diffusion barriers and diffusivities of C6-C12 methylbenzenes in MFI zeolites. Microporous Mesoporous Mater 2022;333:111705.

36. Baumgärtl M, Jentys A, Lercher JA. Understanding elementary steps of transport of xylene mixtures in ZSM-5 zeolites. J Phys Chem C 2019;123:8092-100.

37. Kubarev AV, Breynaert E, Van Loon J, et al. Solvent polarity-induced pore selectivity in H-ZSM-5 catalysis. ACS Catal 2017;7:4248-52.

38. Liu C, Su J, Xiao Y, et al. Constructing directional component distribution in a bifunctional catalyst to boost the tandem reaction of syngas conversion. Chem Catalysis 2021;1:896-907.

39. Korde A, Min B, Kapaca E, et al. Single-walled zeolitic nanotubes. Science 2022;375:62-6.

40. Jeon MY, Kim D, Kumar P, et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 2017;543:690-4.

41. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 2009;461:246-9.

42. Xiao X, Zhang Y, Jiang G, et al. Simultaneous realization of high catalytic activity and stability for catalytic cracking of n-heptane on highly exposed (010) crystal planes of nanosheet ZSM-5 zeolite. Chem Commun (Camb) 2016;52:10068-71.

43. Qureshi BA, Lan X, Arslan MT, Wang T. Highly active and selective nano H-ZSM-5 catalyst with short channels along. Ind Eng Chem Res 2019;58:12611-22.

44. Mohammadparast F, Halladj R, Askari S. The crystal size effect of nano-sized ZSM-5 in the catalytic performance of petrochemical processes: a review. Chem Eng Commun 2015;202:542-56.

45. Ma Y, Cai D, Li Y, et al. The influence of straight pore blockage on the selectivity of methanol to aromatics in nanosized Zn/ZSM-5: an atomic Cs-corrected STEM analysis study. RSC Adv 2016;6:74797-801.

46. Kim J, Kim W, Seo Y, Kim J, Ryoo R. n-Heptane hydroisomerization over Pt/MFI zeolite nanosheets: effects of zeolite crystal thickness and platinum location. J Catal 2013;301:187-97.

47. Ma Y, Wang N, Qian W, Wang Y, Zhang J, Wei F. Molded MFI nanocrystals as a highly active catalyst in a methanol-to-aromatics process. RSC Adv 2016;6:81198-202.

48. Ma X, Li G, Tao J, et al. Synergistic chemical synthesis and self-assembly lead to three-dimensional b-oriented MFI superstructures with selective adsorption and luminescence properties. Chemistry 2018;24:2980-6.

49. Liu Y, Zhou X, Pang X, et al. Improved para -Xylene selectivity in meta- xylene isomerization over ZSM-5 crystals with relatively long b -Axis length. ChemCatChem 2013;5:1517-23.

50. Wang T, Yang C, Gao P, et al. ZnZrOx integrated with chain-like nanocrystal HZSM-5 as efficient catalysts for aromatics synthesis from CO2 hydrogenation. Appl Catal B-Environ 2021;286:119929.

51. Yang J, Gong K, Miao D, et al. Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion. J Energy Chem 2019;35:44-8.

52. Wang N, Sun W, Hou Y, et al. Crystal-plane effects of MFI zeolite in catalytic conversion of methanol to hydrocarbons. J Catal 2018;360:89-96.

53. Wang C, Zhang L, Huang X, et al. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene. Nat Commun 2019;10:4348.

54. Miao L, Hong Z, Zhao G, Huang F, Zhu Z. Mo-Modified ZSM-5 zeolite with intergrowth crystals for high-efficiency catalytic xylene isomerization. Catal Sci Technol 2021;11:4831-7.

55. Chen Q, Liu J, Yang B. Identifying the key steps determining the selectivity of toluene methylation with methanol over HZSM-5. Nat Commun 2021;12:3725.

56. Cai D, Wang N, Chen X, et al. Highly selective conversion of methanol to propylene: design of an MFI zeolite with selective blockage of (010) surfaces. Nanoscale 2019;11:8096-101.

57. Bonilla G, Díaz I, Tsapatsis M, Jeong H, Lee Y, Vlachos DG. Zeolite (MFI) crystal morphology control using organic structure-directing agents. Chem Mater 2004;16:5697-705.

58. Kim E, Choi J, Tsapatsis M. On defects in highly a-oriented MFI membranes. Microporous Mesoporous Mater 2013;170:1-8.

59. Lai Z, Bonilla G, Diaz I, et al. Microstructural optimization of a zeolite membrane for organic vapor separation. Science 2003;300:456-60.

60. Choi J, Ghosh S, King L, Tsapatsis M. MFI zeolite membranes from a- and randomly oriented monolayers. Adsorption 2006;12:339-60.

61. Pham TCT, Kim HS, Yoon KB. Growth of uniformly oriented silica MFI and BEA zeolite films on substrates. Science 2011;334:1533-8.

62. Danilina N, Krumeich F, Castelanelli SA, van Bokhoven JA. Where are the active sites in zeolites? J Phys Chem C 2010;114:6640-5.

63. Zuo J, Chen W, Liu J, Duan X, Ye L, Yuan Y. Selective methylation of toluene using CO2 and H2 to para-xylene. Sci Adv 2020:6.

64. Zhang P, Tan L, Yang G, Tsubaki N. One-pass selective conversion of syngas to para-xylene. Chem Sci 2017;8:7941-6.

65. Gao W, Guo L, Wu Q, et al. Capsule-like zeolite catalyst fabricated by solvent-free strategy for para-Xylene formation from CO2 hydrogenation. Appl Catal B-Environ 2022;303:120906.

66. Wang N, Li J, Sun W, et al. Rational design of Zinc/Zeolite catalyst: selective formation of p-Xylene from methanol to aromatics reaction. Angew Chem Int Ed Engl 2022;61:e202114786.

67. Sun Q, Wang N, Yu J. Advances in catalytic applications of zeolite-supported metal catalysts. Adv Mater 2021;33:e2104442.

68. Wang N, Sun Q, Yu J. Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: a fascinating class of nanocatalysts. Adv Mater 2019;31:e1803966.

69. Chai Y, Shang W, Li W, et al. Noble metal particles confined in zeolites: synthesis, characterization, and applications. Adv Sci (Weinh) 2019;6:1900299.

70. Ou Z, Li Y, Wu W, et al. Encapsulating subnanometric metal clusters in zeolites for catalysis and their challenges. Chem Eng J 2022;430:132925.

71. Wang N, Sun Q, Zhang T, et al. Impregnating subnanometer metallic nanocatalysts into self-pillared zeolite nanosheets. J Am Chem Soc 2021;143:6905-14.

72. Iida T, Zanchet D, Ohara K, Wakihara T, Román-leshkov Y. Concerted bimetallic nanocluster synthesis and encapsulation via induced zeolite framework demetallation for shape and substrate selective heterogeneous catalysis. Angew Chem 2018;130:6564-8.

73. den Broek A, van Grondelle J, van Santen R. Preparation of highly dispersed platinum particles in hzsm-5 zeolite: a study of the pretreatment process of [Pt(NH3)4]2+. J Catal 1997;167:417-24.

74. Wang N, Sun Q, Bai R, Li X, Guo G, Yu J. In situ confinement of ultrasmall pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J Am Chem Soc 2016;138:7484-7.

75. Sun Q, Wang N, Bing Q, et al. Subnanometric hybrid Pd-M(OH)2, M = Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem 2017;3:477-93.

76. Mielby J, Abildstrøm JO, Wang F, Kasama T, Weidenthaler C, Kegnaes S. Oxidation of bioethanol using zeolite-encapsulated gold nanoparticles. Angew Chem 2014;126:12721-4.

77. Kurbanova A, Zákutná D, Gołąbek K, Mazur M, Přech J. Preparation of Fe@MFI and CuFe@MFI composite hydrogenation catalysts by reductive demetallation of Fe-zeolites. Catal Today 2022;390-391:306-15.

78. Zhu J, Osuga R, Ishikawa R, et al. Ultrafast encapsulation of metal nanoclusters into MFI zeolite in the course of its crystallization: catalytic application for propane dehydrogenation. Angew Chem Int Ed Engl 2020;59:19669-74.

79. Oda A, Torigoe H, Itadani A, et al. Success in making Zn+ from atomic Zn0 encapsulated in an MFI-type zeolite with UV light irradiation. J Am Chem Soc 2013;135:18481-9.

80. Goel S, Zones SI, Iglesia E. Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement. J Am Chem Soc 2014;136:15280-90.

81. Zhang Y, Li A, Sajad M, et al. Imidazolium-type ionic liquid-assisted formation of the MFI zeolite loaded with metal nanoparticles for hydrogenation reactions. Chem Eng J 2021;412:128599.

82. Yang J, He Y, He J, et al. Enhanced catalytic performance through in situ encapsulation of ultrafine ru clusters within a high-aluminum zeolite. ACS Catal 2022;12:1847-56.

83. Gu J, Zhang Z, Hu P, et al. Platinum nanoparticles encapsulated in MFI Zeolite crystals by a two-step dry gel conversion method as a highly selective hydrogenation catalyst. ACS Catal 2015;5:6893-901.

84. Sun Q, Wang N, Zhang T, et al. Zeolite-encaged single-atom rhodium catalysts: highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes. Angew Chem Int Ed Engl 2019;58:18570-6.

85. Li T, Beck A, Krumeich F, et al. Stable palladium oxide clusters encapsulated in silicalite-1 for complete methane oxidation. ACS Catal 2021;11:7371-82.

86. Liu L, Lopez-haro M, Lopes CW, et al. Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites. J Catal 2020;391:11-24.

87. Wang N, Qian W, Shen K, Su C, Wei F. Bayberry-like ZnO/MFI zeolite as high performance methanol-to-aromatics catalyst. Chem Commun (Camb) 2016;52:2011-4.

88. Wang Q, Xu S, Chen J, et al. Synthesis of mesoporous ZSM-5 catalysts using different mesogenous templates and their application in methanol conversion for enhanced catalyst lifespan. RSC Adv 2014;4:21479-91.

89. Zhou J, Hua Z, Liu Z, Wu W, Zhu Y, Shi J. Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties. ACS Catal 2011;1:287-91.

90. Liu B, Li C, Ren Y, Tan Y, Xi H, Qian Y. Direct synthesis of mesoporous ZSM-5 zeolite by a dual-functional surfactant approach. Chem Eng J 2012;210:96-102.

91. Zhou J, Hua Z, Wu W, et al. Hollow mesoporous zeolite microspheres: hierarchical macro-/meso-/microporous structure and exceptionally enhanced adsorption properties. Dalton Trans 2011;40:12667-9.

92. Chen G, Li J, Wang S, et al. Construction of Single-Crystalline Hierarchical ZSM-5 with Open Nanoarchitectures via Anisotropic-Kinetics Transformation for the Methanol-to-Hydrocarbons Reaction. Angew Chem Int Ed Engl 2022;61:e202200677.

93. Ogura M, Shinomiya S, Tateno J, et al. Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. APPL CATAL A-GEN 2001;219:33-43.

94. Groen JC, Bach T, Ziese U, et al. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. J Am Chem Soc 2005;127:10792-3.

95. Dong A, Ren N, Yang W, et al. Preparation of hollow zeolite spheres and three-dimensionally ordered macroporous zeolite monoliths with functionalized interiors. Adv Funct Mater 2003;13:943-8.

96. Liu Y, Qiang W, Ji T, et al. Uniform hierarchical MFI nanosheets prepared via anisotropic etching for solution-based sub-100-nm-thick oriented MFI layer fabrication. Sci Adv 2020;6:eaay5993.

97. Zhou T, Zhang D, Liu Y, et al. Construction of monodispersed single-crystalline hierarchical ZSM-5 nanosheets via anisotropic etching. J Energy Chem 2022;72:516-21.

98. Han S, Wang Z, Meng L, Jiang N. Synthesis of uniform mesoporous ZSM-5 using hydrophilic carbon as a hard template. Mater Chem Phys 2016;177:112-7.

99. Kim S, Shah J, Pinnavaia TJ. Colloid-imprinted carbons as templates for the nanocasting synthesis of mesoporous ZSM-5 zeolite. Chem Mater 2003;15:1664-8.

100. Chen H, Wang Y, Sun C, Wang X, Wang C. Synthesis of hierarchical ZSM-5 zeolites with CTAB-containing seed silicalite-1 and its catalytic performance in methanol to propylene. Catal Commun 2018;112:10-4.

101. Dai C, Zhang A, Li L, et al. Synthesis of hollow nanocubes and macroporous monoliths of silicalite-1 by alkaline treatment. Chem Mater 2013;25:4197-205.

102. Jin W, Qiao J, Yu J, Wang Y, Cao J. Influence of hollow ZSM-5 zeolites prepared by treatment with different alkalis on the catalytic conversion of methanol to aromatics. Energy Fuels 2020;34:14633-46.

103. Dai C, Zhang A, Liu M, Guo X, Song C. Hollow ZSM-5 with silicon-rich surface, double shells, and functionalized interior with metallic nanoparticles and carbon nanotubes. Adv Funct Mater 2015;25:7479-87.

104. Kwok KM, Ong SWD, Chen L, Zeng HC. Transformation of stöber silica spheres to hollow hierarchical single-crystal ZSM-5 zeolites with encapsulated metal nanocatalysts for selective catalysis. ACS Appl Mater Interfaces 2019;11:14774-85.

105. Dai C, Zhang A, Song C, Guo X. Advances in the synthesis and catalysis of solid and hollow zeolite-encapsulated metal catalysts. Elsevier; 2018. p. 75-115.

106. Han SW, Park H, Han J, et al. PtZn intermetallic compound nanoparticles in mesoporous zeolite exhibiting high catalyst durability for propane dehydrogenation. ACS Catal 2021;11:9233-41.

107. Cho HJ, Kim D, Li S, Su D, Ma D, Xu B. Molecular-level proximity of metal and acid sites in zeolite-encapsulated Pt nanoparticles for selective multistep tandem catalysis. ACS Catal 2020;10:3340-8.

108. Rasmussen KH, Goodarzi F, Christensen DB, Mielby J, Kegnæs S. Stabilization of metal nanoparticle catalysts via encapsulation in mesoporous zeolites by steam-assisted recrystallization. ACS Appl Nano Mater 2019;2:8083-91.

109. Peng H, Dong T, Yang S, et al. Intra-crystalline mesoporous zeolite encapsulation-derived thermally robust metal nanocatalyst in deep oxidation of light alkanes. Nat Commun 2022;13:295.

110. Chen Y, Zhu X, Wang X, Su Y. A reliable protocol for fast and facile constructing multi-hollow silicalite-1 and encapsulating metal nanoparticles within the hierarchical zeolite. Chem Eng J 2021;419:129641.

111. Gao X, Zhou Y, Feng L, et al. Direct low-temperature hydrothermal synthesis of uniform Pd nanoparticles encapsulated mesoporous TS-1 and its excellent catalytic capability. Microporous Mesoporous Mater 2019;283:82-7.

112. Cui T, Ke W, Zhang W, Wang H, Li X, Chen J. Encapsulating palladium nanoparticles inside mesoporous mfi zeolite nanocrystals for shape-selective catalysis. Angew Chem 2016;128:9324-8.

113. Thumbayil R, Mielby J, Kegnæs S. Pd Nanoparticles encapsulated in mesoporous HZSM-5 zeolite for selective one-step conversion of acetone to methyl isobutyl ketone. Top Catal 2019;62:678-88.

114. Jia X, Jiang J, Zou S, et al. Library creation Of ultrasmall multi-metallic nanoparticles confined in mesoporous MFI zeolites. Angew Chem Int Ed Engl 2021;60:14571-7.

115. Dai C, Zhang A, Liu M, Gu L, Guo X, Song C. Hollow alveolus-like nanovesicle assembly with metal-encapsulated hollow zeolite nanocrystals. ACS Nano 2016;10:7401-8.

116. Shen X, Mao W, Ma Y, et al. A hierarchical MFI zeolite with a two-dimensional square mesostructure. Angew Chem 2018;130:732-6.

117. Zhang Y, Shen X, Gong Z, Han L, Sun H, Che S. Single-crystalline MFI zeolite with sheet-like mesopores layered along the a axis. Chemistry 2019;25:738-42.

118. Singh BK, Xu D, Han L, Ding J, Wang Y, Che S. Synthesis of single-crystalline mesoporous ZSM-5 with three-dimensional pores via the self-assembly of a designed triply branched cationic surfactant. Chem Mater 2014;26:7183-8.

119. Kim J, Ryoo R, Opanasenko MV, Shamzhy MV, Čejka J. Mesoporous MFI zeolite nanosponge as a high-performance catalyst in the pechmann condensation reaction. ACS Catal 2015;5:2596-604.

120. Zhang X, Liu D, Xu D, et al. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 2012;336:1684-7.

121. Wang N, Qian W, Wei F. Fabrication and catalytic properties of three-dimensional ordered zeolite arrays with interconnected micro-meso-macroporous structure. J Mater Chem A 2016;4:10834-41.

122. Ghorbanpour A, Rimer JD, Grabow LC. Periodic, vdW-corrected density functional theory investigation of the effect of Al siting in H-ZSM-5 on chemisorption properties and site-specific acidity. Catal Commun 2014;52:98-102.

123. Vankoningsveld H, Jansen J, Vanbekkum H. The monoclinic framework structure of zeolite H-ZSM-5. Comparison with the orthorhombic framework of as-synthesized ZSM-5. Zeolites 1990;10:235-42.

124. Kim S, Park G, Woo MH, Kwak G, Kim SK. Control of hierarchical structure and framework-al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion. ACS Catal 2019;9:2880-92.

125. Wang Y, He X, Yang F, Su Z, Zhu X. Control of framework aluminum distribution in MFI channels on the catalytic performance in alkylation of benzene with methanol. Ind Eng Chem Res 2020;59:13420-7.

126. Dědeček J, Sobalík Z, Wichterlová B. Siting and distribution of framework aluminium atoms in silicon-rich zeolites and impact on catalysis. Catal Rev 2012;54:135-223.

127. Liang T, Chen J, Qin Z, et al. Conversion of methanol to olefins over H-ZSM-5 zeolite: reaction pathway is related to the framework aluminum siting. ACS Catal 2016;6:7311-25.

128. Chen K, Wu X, Zhao J, et al. Organic-free modulation of the framework Al distribution in ZSM-5 zeolite by magnesium participated synthesis and its impact on the catalytic cracking reaction of alkanes. J Catal 2022;413:735-50.

129. Pashkova V, Sklenak S, Klein P, Urbanova M, Dědeček J. Location of framework Al atoms in the channels of ZSM-5: effect of the (hydrothermal) synthesis. Chemistry 2016;22:3937-41.

130. Yokoi T, Mochizuki H, Namba S, Kondo JN, Tatsumi T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties. J Phys Chem C 2015;119:15303-15.

131. Ilias S, Bhan A. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catal 2013;3:18-31.

132. Bjorgen M, Svelle S, Joensen F, et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species. J Catal 2007;249:195-207.

133. Zhang M, Xu S, Wei Y, et al. Methanol conversion on ZSM-22, ZSM-35 and ZSM-5 zeolites: effects of 10-membered ring zeolite structures on methylcyclopentenyl cations and dual cycle mechanism. RSC Adv 2016;6:95855-64.

134. Haw JF, Nicholas JB, Song W, et al. Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. J Am Chem Soc 2000;122:4763-75.

135. Svelle S, Joensen F, Nerlov J, et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. J Am Chem Soc 2006;128:14770-1.

136. Haw JF, Goguen PW, Xu T, Skloss TW, Song W, Wang Z. In situ NMR investigations of heterogeneous catalysis with samples prepared under standard reaction conditions. Angew Chem Int Ed 1998;37:948-9.

137. Wang C, Chu Y, Zheng A, et al. Frontispiece: new insight into the hydrocarbon-pool chemistry of the methanol-to-olefins conversion over zeolite H-ZSM-5 from GC-MS, solid-state NMR spectroscopy, and DFT calculations. Chem Eur J 2014;20:12432-43.

138. Ilias S, Bhan A. Tuning the selectivity of methanol-to-hydrocarbons conversion on H-ZSM-5 by co-processing olefin or aromatic compounds. J Catal 2012;290:186-92.

139. Bjørgen M, Joensen F, Lillerud K, Olsbye U, Svelle S. The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta. Catal Today 2009;142:90-7.

140. Zhang M, Xu S, Wei Y, et al. Changing the balance of the MTO reaction dual-cycle mechanism: Reactions over ZSM-5 with varying contact times. Chinese J Catal 2016;37:1413-22.

141. Dai W, Yang L, Wang C, et al. Effect of n -butanol cofeeding on the methanol to aromatics conversion over ga-modified nano H-ZSM-5 and its mechanistic interpretation. ACS Catal ;8:1352-62.

142. Wang C, Sun X, Xu J, et al. Impact of temporal and spatial distribution of hydrocarbon pool on methanol conversion over H-ZSM-5. J Catal 2017;354:138-51.

143. Gao P, Xu J, Qi G, et al. A mechanistic study of methanol-to-aromatics reaction over Ga-modified ZSM-5 zeolites: understanding the dehydrogenation process. ACS Catal 2018;8:9809-20.

144. Arslan MT, Ali B, Gilani SZA, et al. Selective conversion of syngas into tetramethylbenzene via an aldol-aromatic mechanism. ACS Catal 2020;10:2477-88.

145. Arslan MT, Tian G, Ali B, et al. Highly selective conversion of CO2 or CO into precursors for kerosene-based aviation fuel via an aldol-aromatic mechanism. ACS Catal 2022;12:2023-33.

146. Comas-Vives A, Valla M, Copéret C, Sautet P. Cooperativity between Al sites promotes hydrogen transfer and carbon-carbon bond formation upon dimethyl ether activation on alumina. ACS Cent Sci 2015;1:313-9.

147. Liu Y, Müller S, Berger D, et al. Formation mechanism of the first carbon-carbon bond and the first olefin in the methanol conversion into hydrocarbons. Angew Chem 2016;128:5817-20.

148. Wu X, Xu S, Zhang W, et al. Direct mechanism of the first carbon-carbon bond formation in the methanol-to-hydrocarbons process. Angew Chem 2017;129:9167-71.

149. Wang C, Chu Y, Xu J, et al. Extra-framework aluminum-assisted initial C-C bond formation in methanol-to-olefins conversion on zeolite H-ZSM-5. Angew Chem 2018;130:10354-8.

150. Ni Y, Zhu W, Liu Z. H-ZSM-5-catalyzed hydroacylation involved in the coupling of methanol and formaldehyde to aromatics. ACS Catal 2019;9:11398-403.

151. Liu Y, Kirchberger FM, Müller S, et al. Critical role of formaldehyde during methanol conversion to hydrocarbons. Nat Commun 2019;10:1462.

152. Chen Z, Ni Y, Zhi Y, et al. Coupling of methanol and carbon monoxide over H-ZSM-5 to form aromatics. Angew Chem Int Ed Engl 2018;57:12549-53.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/